BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 1684290)

  • 1. Functional reconstitution of the gamma-aminobutyric acid transporter from synaptic vesicles using artificial ion gradients.
    Hell JW; Edelmann L; Hartinger J; Jahn R
    Biochemistry; 1991 Dec; 30(51):11795-800. PubMed ID: 1684290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles.
    Hell JW; Maycox PR; Jahn R
    J Biol Chem; 1990 Feb; 265(4):2111-7. PubMed ID: 1688846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes.
    Maycox PR; Deckwerth T; Hell JW; Jahn R
    J Biol Chem; 1988 Oct; 263(30):15423-8. PubMed ID: 2902091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gamma-aminobutyric acid transporter driven by a proton pump is present in synaptic-like microvesicles of pancreatic beta cells.
    Thomas-Reetz A; Hell JW; During MJ; Walch-Solimena C; Jahn R; De Camilli P
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5317-21. PubMed ID: 8506380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two pharmacologically distinct sodium- and chloride-coupled high-affinity gamma-aminobutyric acid transporters are present in plasma membrane vesicles and reconstituted preparations from rat brain.
    Kanner BI; Bendahan A
    Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2550-4. PubMed ID: 2108440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenergetic characterization of gamma-aminobutyric acid transporter of synaptic vesicles.
    Hell JW; Jahn R
    Methods Enzymol; 1998; 296():116-24. PubMed ID: 9779444
    [No Abstract]   [Full Text] [Related]  

  • 7. Cholesterol is required for the reconstruction of the sodium- and chloride-coupled, gamma-aminobutyric acid transporter from rat brain.
    Shouffani A; Kanner BI
    J Biol Chem; 1990 Apr; 265(11):6002-8. PubMed ID: 2318845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of the neurotoxin, 4-methylphenylpyridinium, into chromaffin granules and synaptic vesicles: a proton gradient drives its uptake through monoamine transporter.
    Moriyama Y; Amakatsu K; Futai M
    Arch Biochem Biophys; 1993 Sep; 305(2):271-7. PubMed ID: 8373164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy coupling of L-glutamate transport and vacuolar H(+)-ATPase in brain synaptic vesicles.
    Moriyama Y; Maeda M; Futai M
    J Biochem; 1990 Oct; 108(4):689-93. PubMed ID: 2149857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gamma-aminobutyric acid transporter and its interaction with taurine in the apical membrane of the bovine retinal pigment epithelium.
    Sivakami S; Ganapathy V; Leibach FH; Miyamoto Y
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):391-7. PubMed ID: 1575683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the properties of gamma-aminobutyric acid and L-glutamate uptake into synaptic vesicles isolated from rat brain.
    Fykse EM; Christensen H; Fonnum F
    J Neurochem; 1989 Mar; 52(3):946-51. PubMed ID: 2465384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of [gamma-3H]aminobutyric acid transport by Ca2+ in isolated synaptic plasma membrane vesicles.
    Gonçalves PP; Carvalho AP; Vale MG
    Brain Res Mol Brain Res; 1997 Nov; 51(1-2):106-14. PubMed ID: 9427512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles.
    Moseley RH; Meier PJ; Aronson PS; Boyer JL
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G35-43. PubMed ID: 3002192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton movements and electric potential generation in reconstituted ATPase proteoliposomes from the thermophilic cyanobacterium Synechococcus 6716.
    Van Walraven HS; Marvin HJ; Koppenaal E; Kraayenhof R
    Eur J Biochem; 1984 Nov; 144(3):555-61. PubMed ID: 6092075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificially imposed electrical potentials drive L-glutamate uptake into synaptic vesicles of bovine cerebral cortex.
    Shioi J; Ueda T
    Biochem J; 1990 Apr; 267(1):63-8. PubMed ID: 1970243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution and partial purification of several Na+ cotransport systems from renal brush-border membranes. Properties of the L-glutamate transporter in proteoliposomes.
    Koepsell H; Korn K; Ferguson D; Menuhr H; Ollig D; Haase W
    J Biol Chem; 1984 May; 259(10):6548-58. PubMed ID: 6725262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active transport of gamma-aminobutyric acid and glycine into synaptic vesicles.
    Kish PE; Fischer-Bovenkerk C; Ueda T
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3877-81. PubMed ID: 2566998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+) regulation of the carrier-mediated gamma-aminobutyric acid release from isolated synaptic plasma membrane vesicles.
    Cordeiro JM; Meireles SM; Vale MG; Oliveira CR; Gonçalves PP
    Neurosci Res; 2000 Dec; 38(4):385-95. PubMed ID: 11164565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons.
    Takamori S; Rhee JS; Rosenmund C; Jahn R
    Nature; 2000 Sep; 407(6801):189-94. PubMed ID: 11001057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.