These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 16843015)
21. Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Bellí G; Garí E; Aldea M; Herrero E Yeast; 1998 Sep; 14(12):1127-38. PubMed ID: 9778798 [TBL] [Abstract][Full Text] [Related]
22. Generation and characterization of tTS-H4: a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system. Bockamp E; Christel C; Hameyer D; Khobta A; Maringer M; Reis M; Heck R; Cabezas-Wallscheid N; Epe B; Oesch-Bartlomowicz B; Kaina B; Schmitt S; Eshkind L J Gene Med; 2007 Apr; 9(4):308-18. PubMed ID: 17330923 [TBL] [Abstract][Full Text] [Related]
23. The high-mobility-group domain transcription factor Rop1 is a direct regulator of prf1 in Ustilago maydis. Brefort T; Müller P; Kahmann R Eukaryot Cell; 2005 Feb; 4(2):379-91. PubMed ID: 15701800 [TBL] [Abstract][Full Text] [Related]
27. Inducibility of doxycycline-regulated gene in neural and neuroendocrine cells strongly depends on the appropriate choice of a tetracycline-responsive promoter. Klopotowska D; Strzadala L; Matuszyk J Neurochem Int; 2008 Jan; 52(1-2):221-9. PubMed ID: 17618706 [TBL] [Abstract][Full Text] [Related]
28. The posttranscriptional machinery of Ustilago maydis. Feldbrügge M; Zarnack K; Vollmeister E; Baumann S; Koepke J; König J; Münsterkötter M; Mannhaupt G Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S40-6. PubMed ID: 18468465 [TBL] [Abstract][Full Text] [Related]
29. Cisplatin upregulates Saccharomyces cerevisiae genes involved in iron homeostasis through activation of the iron insufficiency-responsive transcription factor Aft1. Kimura A; Ohashi K; Naganuma A J Cell Physiol; 2007 Feb; 210(2):378-84. PubMed ID: 17096368 [TBL] [Abstract][Full Text] [Related]
30. Sending mixed signals: redundancy vs. uniqueness of signaling components in the plant pathogen, Ustilago maydis. García-Pedrajas MD; Nadal M; Bölker M; Gold SE; Perlin MH Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S22-30. PubMed ID: 18502157 [TBL] [Abstract][Full Text] [Related]
31. Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Cai M; Qiu D; Yuan T; Ding X; Li H; Duan L; Xu C; Li X; Wang S Plant Cell Environ; 2008 Jan; 31(1):86-96. PubMed ID: 17986178 [TBL] [Abstract][Full Text] [Related]
32. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. Kaffarnik F; Müller P; Leibundgut M; Kahmann R; Feldbrügge M EMBO J; 2003 Nov; 22(21):5817-26. PubMed ID: 14592979 [TBL] [Abstract][Full Text] [Related]
33. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis. Carbó N; Pérez-Martín J Fungal Genet Biol; 2008 Sep; 45(9):1315-27. PubMed ID: 18674629 [TBL] [Abstract][Full Text] [Related]
34. Fungal gene clusters. Dean RA Nat Biotechnol; 2007 Jan; 25(1):67. PubMed ID: 17211403 [No Abstract] [Full Text] [Related]
35. Generation of tetracycline-inducible conditional gene knockout cells in a human Nalm-6 cell line. Ono T; Nishijima H; Adachi N; Iiizumi S; Morohoshi A; Koyama H; Shibahara K J Biotechnol; 2009 Apr; 141(1-2):1-7. PubMed ID: 19135102 [TBL] [Abstract][Full Text] [Related]
36. A genome-based analysis of amino acid metabolism in the biotrophic plant pathogen Ustilago maydis. McCann MP; Snetselaar KM Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S77-87. PubMed ID: 18579420 [TBL] [Abstract][Full Text] [Related]
37. Structure-function analysis of lipopeptide pheromones from the plant pathogen Ustilago maydis. Szabó Z; Tönnis M; Kessler H; Feldbrügge M Mol Genet Genomics; 2002 Nov; 268(3):362-70. PubMed ID: 12436258 [TBL] [Abstract][Full Text] [Related]
38. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. Bakkeren G; Jiang G; Warren RL; Butterfield Y; Shin H; Chiu R; Linning R; Schein J; Lee N; Hu G; Kupfer DM; Tang Y; Roe BA; Jones S; Marra M; Kronstad JW Fungal Genet Biol; 2006 Sep; 43(9):655-66. PubMed ID: 16793293 [TBL] [Abstract][Full Text] [Related]
39. Tetracycline-controlled (TetON) gene expression system for the smut fungus Ingole KD; Nagarajan N; Uhse S; Giannini C; Djamei A Front Fungal Biol; 2022; 3():1029114. PubMed ID: 37746190 [No Abstract] [Full Text] [Related]
40. Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice. Ovchinnikov DA; van Zuylen WJ; DeBats CE; Alexander KA; Kellie S; Hume DA J Leukoc Biol; 2008 Feb; 83(2):430-3. PubMed ID: 17971498 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]