These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Advances in cereal genomics and applications in crop breeding. Varshney RK; Hoisington DA; Tyagi AK Trends Biotechnol; 2006 Nov; 24(11):490-9. PubMed ID: 16956681 [TBL] [Abstract][Full Text] [Related]
4. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. Yadav RS; Sehgal D; Vadez V J Exp Bot; 2011 Jan; 62(2):397-408. PubMed ID: 20819788 [TBL] [Abstract][Full Text] [Related]
5. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Sreenivasulu N; Sopory SK; Kavi Kishor PB Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853 [TBL] [Abstract][Full Text] [Related]
6. Prospectives for applying molecular and genetic methodology to improve wheat cultivars in drought environments. Zhao CX; Guo LY; Jaleel CA; Shao HB; Yang HB C R Biol; 2008 Aug; 331(8):579-86. PubMed ID: 18606387 [TBL] [Abstract][Full Text] [Related]
7. Gene discovery in cereals through quantitative trait loci and expression analysis in water-use efficiency measured by carbon isotope discrimination. Chen J; Chang SX; Anyia AO Plant Cell Environ; 2011 Dec; 34(12):2009-23. PubMed ID: 21752030 [TBL] [Abstract][Full Text] [Related]
8. Genetic and genomic tools to improve drought tolerance in wheat. Fleury D; Jefferies S; Kuchel H; Langridge P J Exp Bot; 2010 Jul; 61(12):3211-22. PubMed ID: 20525798 [TBL] [Abstract][Full Text] [Related]
9. Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. Du W; Yu D; Fu S J Integr Plant Biol; 2009 Sep; 51(9):868-78. PubMed ID: 19723246 [TBL] [Abstract][Full Text] [Related]
10. Drought and salt tolerances in wild relatives for wheat and barley improvement. Nevo E; Chen G Plant Cell Environ; 2010 Apr; 33(4):670-85. PubMed ID: 20040064 [TBL] [Abstract][Full Text] [Related]
15. Crop evolution: from genetics to genomics. Burke JM; Burger JC; Chapman MA Curr Opin Genet Dev; 2007 Dec; 17(6):525-32. PubMed ID: 17933510 [TBL] [Abstract][Full Text] [Related]
16. Genomic dissection of drought resistance in durum wheat x wild emmer wheat recombinant inbreed line population. Peleg Z; Fahima T; Krugman T; Abbo S; Yakir D; Korol AB; Saranga Y Plant Cell Environ; 2009 Jul; 32(7):758-79. PubMed ID: 19220786 [TBL] [Abstract][Full Text] [Related]
17. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Mir RR; Zaman-Allah M; Sreenivasulu N; Trethowan R; Varshney RK Theor Appl Genet; 2012 Aug; 125(4):625-45. PubMed ID: 22696006 [TBL] [Abstract][Full Text] [Related]
18. Genomics-based precision breeding approaches to improve drought tolerance in rice. Swamy BP; Kumar A Biotechnol Adv; 2013 Dec; 31(8):1308-18. PubMed ID: 23702083 [TBL] [Abstract][Full Text] [Related]
19. Adapting genomics to study the evolution and ecology of agricultural systems. Friesen ML; von Wettberg EJ Curr Opin Plant Biol; 2010 Apr; 13(2):119-25. PubMed ID: 20022289 [TBL] [Abstract][Full Text] [Related]
20. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. Valliyodan B; Ye H; Song L; Murphy M; Shannon JG; Nguyen HT J Exp Bot; 2017 Apr; 68(8):1835-1849. PubMed ID: 27927997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]