These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16843472)

  • 1. Symmetry-based resistance as a novel means of lower limb rehabilitation.
    Simon AM; Brent Gillespie R; Ferris DP
    J Biomech; 2007; 40(6):1286-92. PubMed ID: 16843472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression.
    Rocon E; Belda-Lois JM; Ruiz AF; Manto M; Moreno JC; Pons JL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):367-78. PubMed ID: 17894269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary trial of symmetry-based resistance in individuals with post-stroke hemiparesis.
    Simon AM; Kelly BM; Ferris DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5294-9. PubMed ID: 19964119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
    Regnaux JP; Saremi K; Marehbian J; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2008; 22(4):348-54. PubMed ID: 18073325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standardized voluntary force measurement in a lower extremity rehabilitation robot.
    Bolliger M; Banz R; Dietz V; Lünenburger L
    J Neuroeng Rehabil; 2008 Oct; 5():23. PubMed ID: 18957092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings.
    Madoński R; Kordasz M; Sauer P
    ISA Trans; 2014 Jul; 53(4):899-908. PubMed ID: 24168844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.
    Zhu Y; Zhang G; Zhang C; Liu G; Zhao J
    Biomed Mater Eng; 2015; 26 Suppl 1():S729-38. PubMed ID: 26406068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength training improves the tri-digit finger-pinch force control of older adults.
    Keogh JW; Morrison S; Barrett R
    Arch Phys Med Rehabil; 2007 Aug; 88(8):1055-63. PubMed ID: 17678670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated control of assistive robotic devices for activities of daily living tasks.
    Erol D; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.
    Ho HJ; Chen TC
    Comput Methods Programs Biomed; 2009 Nov; 96(2):96-107. PubMed ID: 19439391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rehabilitation device with variable resistance and intelligent control.
    Dong S; Lu KQ; Sun JQ; Rudolph K
    Med Eng Phys; 2005 Apr; 27(3):249-55. PubMed ID: 15694609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of instability training equipment on lower limb kinematics and muscle activity.
    Pfusterschmied J; Lindinger S; Buchecker M; Stöggl T; Wagner H; Müller E
    Sportverletz Sportschaden; 2013 Mar; 27(1):28-33. PubMed ID: 23404457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mechatronic body weight support system.
    Frey M; Colombo G; Vaglio M; Bucher R; Jörg M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):311-21. PubMed ID: 17009491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an enhanced leg muscle rehabilitation system.
    Yang CH; Huang HC; Yang CH
    Biomed Mater Eng; 2006; 16(4):279-86. PubMed ID: 16971746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.