BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 16843650)

  • 21. Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling.
    Van Gerven T; Van Keer E; Arickx S; Jaspers M; Wauters G; Vandecasteele C
    Waste Manag; 2005; 25(3):291-300. PubMed ID: 15823744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Release dynamic process identification for a cement based material in various leaching conditions. Part I. Influence of leaching conditions on the release amount.
    Barna R; Rethy Z; Tiruta-Barna L
    J Environ Manage; 2005 Jan; 74(2):141-51. PubMed ID: 15627467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerated carbonation of different size fractions of bottom ash from RDF incineration.
    Baciocchi R; Costa G; Lategano E; Marini C; Polettini A; Pomi R; Postorino P; Rocca S
    Waste Manag; 2010 Jul; 30(7):1310-7. PubMed ID: 20045306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.
    Svensson M; Berg M; Ifwer K; Sjöblom R; Ecke H
    J Hazard Mater; 2007 Jun; 144(1-2):477-84. PubMed ID: 17118536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of thin-film accelerated carbonation on steel slag leaching.
    Baciocchi R; Costa G; Polettini A; Pomi R
    J Hazard Mater; 2015 Apr; 286():369-78. PubMed ID: 25596552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organic carbon leaching behavior from incinerator bottom ash.
    Guimaraes AL; Okuda T; Nishijima W; Okada M
    J Hazard Mater; 2006 Sep; 137(2):1096-101. PubMed ID: 16675109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of leaching mechanisms of caesium ions incorporated in Ordinary Portland Cement.
    Papadokostaki KG; Savidou A
    J Hazard Mater; 2009 Nov; 171(1-3):1024-31. PubMed ID: 19604635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Release dynamic process identification for a cement based material in various leaching conditions. Part II. Modelling the release dynamics for different leaching conditions.
    Tiruta-Barna L; Rethy Z; Barna R
    J Environ Manage; 2005 Jan; 74(2):127-39. PubMed ID: 15627466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the multi-scale leaching behaviour of compacted coal fly ash.
    Tiruta-Barna L; Rakotoarisoa Z; Méhu J
    J Hazard Mater; 2006 Oct; 137(3):1466-78. PubMed ID: 16737774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of waste input and combustion technology on MSWI bottom ash quality.
    Rendek E; Ducom G; Germain P
    Waste Manag; 2007; 27(10):1403-7. PubMed ID: 17509859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High durability cementitious material with mineral admixtures and carbonation curing.
    Watanabe K; Yokozeki K; Ashizawa R; Sakata N; Morioka M; Sakai E; Daimon M
    Waste Manag; 2006; 26(7):752-7. PubMed ID: 16650753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.
    Montes-Hernandez G; Pérez-López R; Renard F; Nieto JM; Charlet L
    J Hazard Mater; 2009 Jan; 161(2-3):1347-54. PubMed ID: 18539389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles.
    Huntzinger DN; Gierke JS; Sutter LL; Kawatra SK; Eisele TC
    J Hazard Mater; 2009 Aug; 168(1):31-7. PubMed ID: 19269085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of carbonation on leaching of constituents from a cementitious waste form for treatment of low activity waste at the DOE Hanford site.
    Zhang P; Chen Z; Brown KG; Garrabrants AC; Delapp R; Meeussen JCL; van der Sloot HA; Kosson DS
    Waste Manag; 2022 May; 144():431-444. PubMed ID: 35461054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash.
    Lin WY; Heng KS; Sun X; Wang JY
    Waste Manag; 2015 Sep; 43():264-72. PubMed ID: 26077229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaching of carbonated air pollution control residues using compliance leaching tests.
    He PJ; Zhang H; Shao LM; Lee DJ
    J Environ Qual; 2006; 35(2):442-9. PubMed ID: 16455844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mobility of organic carbon from incineration residues.
    Ecke H; Svensson M
    Waste Manag; 2008; 28(8):1301-9. PubMed ID: 17689951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pb stabilization in fresh fly ash from municipal solid waste incinerator using accelerated carbonation technology.
    Jianguo J; Maozhe C; Yan Z; Xin X
    J Hazard Mater; 2009 Jan; 161(2-3):1046-51. PubMed ID: 18502039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete.
    Shi HS; Kan LL
    J Hazard Mater; 2009 May; 164(2-3):750-4. PubMed ID: 18838222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2.
    Fernández Bertos M; Simons SJ; Hills CD; Carey PJ
    J Hazard Mater; 2004 Aug; 112(3):193-205. PubMed ID: 15302440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.