These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 16843697)
61. Gait characteristics and functional assessment of children with type I osteogenesis imperfecta. Graf A; Hassani S; Krzak J; Caudill A; Flanagan A; Bajorunaite R; Harris G; Smith P J Orthop Res; 2009 Sep; 27(9):1182-90. PubMed ID: 19242979 [TBL] [Abstract][Full Text] [Related]
62. Gait analysis and validation using voxel data. Wang F; Stone E; Dai W; Skubic M; Keller J Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6127-30. PubMed ID: 19965071 [TBL] [Abstract][Full Text] [Related]
63. Evaluation of alternative technical markers for the pelvic coordinate system. Kisho Fukuchi R; Arakaki C; Veras Orselli MI; Duarte M J Biomech; 2010 Feb; 43(3):592-4. PubMed ID: 19880124 [TBL] [Abstract][Full Text] [Related]
64. Gait speed in relation to categories of functional ambulation after spinal cord injury. van Hedel HJ; Neurorehabil Neural Repair; 2009 May; 23(4):343-50. PubMed ID: 19036717 [TBL] [Abstract][Full Text] [Related]
65. Assessment of level-walking aperiodicity. Pecoraro F; MazzĂ C; Zok M; Cappozzo A J Neuroeng Rehabil; 2006 Dec; 3():28. PubMed ID: 17156417 [TBL] [Abstract][Full Text] [Related]
66. Comparison of gait characteristics between older rolling walker users and older potential walker users. Liu HH; McGee M; Wang W; Persson M Arch Gerontol Geriatr; 2009; 48(3):276-80. PubMed ID: 18359111 [TBL] [Abstract][Full Text] [Related]
67. Idiopathic toe walking: a kinematic and kinetic profile. Westberry DE; Davids JR; Davis RB; de Morais Filho MC J Pediatr Orthop; 2008; 28(3):352-8. PubMed ID: 18362803 [TBL] [Abstract][Full Text] [Related]
68. [Algorithm for recognizing the markers in human motion detection]. Guo Z; Wang G; Ding H; Ding H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):312-5. PubMed ID: 15884542 [TBL] [Abstract][Full Text] [Related]
69. A novel biomechanical device improves gait pattern in patient with chronic nonspecific low back pain. Elbaz A; Mirovsky Y; Mor A; Enosh S; Debbi E; Segal G; Barzilay Y; Debi R Spine (Phila Pa 1976); 2009 Jul; 34(15):E507-12. PubMed ID: 19564755 [TBL] [Abstract][Full Text] [Related]
70. Concurrent validity of SMTEC footswitches system for the measurement of temporal gait parameters. Beauchet O; Herrmann FR; Grandjean R; Dubost V; Allali G Gait Posture; 2008 Jan; 27(1):156-9. PubMed ID: 17291765 [TBL] [Abstract][Full Text] [Related]
71. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. De Groote F; De Laet T; Jonkers I; De Schutter J J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414 [TBL] [Abstract][Full Text] [Related]
72. Accuracy, reliability, and validity of a spatiotemporal gait analysis system. Barker S; Craik R; Freedman W; Herrmann N; Hillstrom H Med Eng Phys; 2006 Jun; 28(5):460-7. PubMed ID: 16122966 [TBL] [Abstract][Full Text] [Related]
73. Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults. Parvataneni K; Ploeg L; Olney SJ; Brouwer B Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):95-100. PubMed ID: 18976839 [TBL] [Abstract][Full Text] [Related]
74. A normative sample of temporal and spatial gait parameters in children using the GAITRite electronic walkway. Dusing SC; Thorpe DE Gait Posture; 2007 Jan; 25(1):135-9. PubMed ID: 16875823 [TBL] [Abstract][Full Text] [Related]
75. Nonlinear analysis of gait kinematics to track changes in oxygen consumption in prolonged load carriage walking: a pilot study. Schiffman JM; Chelidze D; Adams A; Segala DB; Hasselquist L J Biomech; 2009 Sep; 42(13):2196-9. PubMed ID: 19647830 [TBL] [Abstract][Full Text] [Related]
76. Automated detection of instantaneous gait events using time frequency analysis and manifold embedding. Aung MS; Thies SB; Kenney LP; Howard D; Selles RW; Findlow AH; Goulermas JY IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):908-16. PubMed ID: 23322764 [TBL] [Abstract][Full Text] [Related]
77. A method of estimating the degree of active participation during stepping in a driven gait orthosis based on actuator force profile matching. Banz R; Bolliger M; Muller S; Santelli C; Riener R IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):15-22. PubMed ID: 19211319 [TBL] [Abstract][Full Text] [Related]
78. Loading and gait symmetry during level and stair walking in asymptomatic subjects with knee osteoarthritis: importance of quadriceps femoris in reducing impact force during heel strike? Liikavainio T; Isolehto J; Helminen HJ; Perttunen J; Lepola V; Kiviranta I; Arokoski JP; Komi PV Knee; 2007 Jun; 14(3):231-8. PubMed ID: 17451958 [TBL] [Abstract][Full Text] [Related]
79. Tracking human position and lower body parts using Kalman and particle filters constrained by human biomechanics. Martinez del Rincon J; Makris D; Orrite Urunuela C; Nebel JC IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):26-37. PubMed ID: 20388598 [TBL] [Abstract][Full Text] [Related]
80. Clinical relevance of gait research applied to clinical trials in spinal cord injury. Ditunno J; Scivoletto G Brain Res Bull; 2009 Jan; 78(1):35-42. PubMed ID: 18848865 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]