BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16843818)

  • 1. Oxidative stress and redox regulation of phospholipase D in myocardial disease.
    Tappia PS; Dent MR; Dhalla NS
    Free Radic Biol Med; 2006 Aug; 41(3):349-61. PubMed ID: 16843818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment.
    Haddad JJ
    Int Immunopharmacol; 2004 Apr; 4(4):475-93. PubMed ID: 15099526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mu-opioid receptor-stimulated synthesis of reactive oxygen species is mediated via phospholipase D2.
    Koch T; Seifert A; Wu DF; Rankovic M; Kraus J; Börner C; Brandenburg LO; Schröder H; Höllt V
    J Neurochem; 2009 Aug; 110(4):1288-96. PubMed ID: 19519662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress.
    Hagele TJ; Mazerik JN; Gregory A; Kaufman B; Magalang U; Kuppusamy ML; Marsh CB; Kuppusamy P; Parinandi NL
    Int J Toxicol; 2007; 26(1):57-69. PubMed ID: 17365148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipase D in platelets and other cells.
    Vorland M; Thorsen VA; Holmsen H
    Platelets; 2008 Dec; 19(8):582-94. PubMed ID: 19012176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impairment of the sarcolemmal phospholipase D-phosphatidate phosphohydrolase pathway in diabetic cardiomyopathy.
    Williams SA; Tappia PS; Yu CH; Bibeau M; Panagia V
    J Mol Cell Cardiol; 1998 Jan; 30(1):109-18. PubMed ID: 9500869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress.
    Brenner DA; Jain M; Pimentel DR; Wang B; Connors LH; Skinner M; Apstein CS; Liao R
    Circ Res; 2004 Apr; 94(8):1008-10. PubMed ID: 15044325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depressed responsiveness of phospholipase C isoenzymes to phosphatidic acid in congestive heart failure.
    Tappia PS; Yu CH; Di Nardo P; Pasricha AK; Dhalla NS; Panagia V
    J Mol Cell Cardiol; 2001 Mar; 33(3):431-40. PubMed ID: 11181012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human cardiac phospholipase D activity is tightly controlled by phosphatidylinositol 4,5-bisphosphate.
    Kurz T; Kemken D; Mier K; Weber I; Richardt G
    J Mol Cell Cardiol; 2004 Feb; 36(2):225-32. PubMed ID: 14871550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of arteries and veins in oxidative stress: producers, destroyers, function, and disease.
    Szasz T; Thakali K; Fink GD; Watts SW
    Exp Biol Med (Maywood); 2007 Jan; 232(1):27-37. PubMed ID: 17202583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidic acid: a potential signal transducer for cardiac hypertrophy.
    Dhalla NS; Xu YJ; Sheu SS; Tappia PS; Panagia V
    J Mol Cell Cardiol; 1997 Nov; 29(11):2865-71. PubMed ID: 9405162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of phospholipase D activity, membrane targeting and intracellular trafficking by phosphoinositides.
    Morris AJ
    Biochem Soc Symp; 2007; (74):247-57. PubMed ID: 17233594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipase C as a potential target for cardioprotection during oxidative stress.
    Tappia PS; Asemu G; Rodriguez-Leyva D
    Can J Physiol Pharmacol; 2010 Mar; 88(3):249-63. PubMed ID: 20393590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The role of phospholipase D in cellular signaling].
    Zhong XL; Cui DC; Li YZ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Oct; 31(5):451-60. PubMed ID: 16222086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipase D in cell proliferation and cancer.
    Foster DA; Xu L
    Mol Cancer Res; 2003 Sep; 1(11):789-800. PubMed ID: 14517341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis.
    Matés JM; Segura JA; Alonso FJ; Márquez J
    Arch Toxicol; 2008 May; 82(5):273-99. PubMed ID: 18443763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excessive copper induces the production of reactive oxygen species, which is mediated by phospholipase D, nicotinamide adenine dinucleotide phosphate oxidase and antioxidant systems.
    Yu ZL; Zhang JG; Wang XC; Chen J
    J Integr Plant Biol; 2008 Feb; 50(2):157-67. PubMed ID: 18713437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.
    Nair S; Li W; Kong AN
    Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Oxidative stress in cells damage processes].
    Kulbacka J; Saczko J; Chwiłkowska A
    Pol Merkur Lekarski; 2009 Jul; 27(157):44-7. PubMed ID: 19650429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: a cohort study.
    Abilés J; de la Cruz AP; Castaño J; Rodríguez-Elvira M; Aguayo E; Moreno-Torres R; Llopis J; Aranda P; Argüelles S; Ayala A; de la Quintana AM; Planells EM
    Crit Care; 2006; 10(5):R146. PubMed ID: 17040563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.