BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16844115)

  • 1. The p53-induced Wig-1 protein binds double-stranded RNAs with structural characteristics of siRNAs and miRNAs.
    Méndez Vidal C; Prahl M; Wiman KG
    FEBS Lett; 2006 Aug; 580(18):4401-8. PubMed ID: 16844115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The p53-induced mouse zinc finger protein wig-1 binds double-stranded RNA with high affinity.
    Méndez-Vidal C; Wilhelm MT; Hellborg F; Qian W; Wiman KG
    Nucleic Acids Res; 2002 May; 30(9):1991-6. PubMed ID: 11972337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The p53 target protein Wig-1 binds hnRNP A2/B1 and RNA Helicase A via RNA.
    Prahl M; Vilborg A; Palmberg C; Jörnvall H; Asker C; Wiman KG
    FEBS Lett; 2008 Jun; 582(15):2173-7. PubMed ID: 18519039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human wig-1, a p53 target gene that encodes a growth inhibitory zinc finger protein.
    Hellborg F; Qian W; Mendez-Vidal C; Asker C; Kost-Alimova M; Wilhelm M; Imreh S; Wiman KG
    Oncogene; 2001 Sep; 20(39):5466-74. PubMed ID: 11571644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The p53 target Wig-1: a regulator of mRNA stability and stem cell fate?
    Vilborg A; Bersani C; Wilhelm MT; Wiman KG
    Cell Death Differ; 2011 Sep; 18(9):1434-40. PubMed ID: 21394102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element.
    Vilborg A; Glahder JA; Wilhelm MT; Bersani C; Corcoran M; Mahmoudi S; Rosenstierne M; Grandér D; Farnebo M; Norrild B; Wiman KG
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15756-61. PubMed ID: 19805223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The p53-induced Wig-1 zinc finger protein is highly conserved from fish to man.
    Hellborg F; Wiman KG
    Int J Oncol; 2004 Jun; 24(6):1559-64. PubMed ID: 15138600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of Wig-1 mRNA targets by RIP-Seq analysis.
    Bersani C; Huss M; Giacomello S; Xu LD; Bianchi J; Eriksson S; Jerhammar F; Alexeyenko A; Vilborg A; Lundeberg J; Lui WO; Wiman KG
    Oncotarget; 2016 Jan; 7(2):1895-911. PubMed ID: 26672765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Dicer interacts with Wig-1 protein].
    Huang J; Wang HB; Yao L; Zheng XM; Radmark O
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2008 Oct; 41(5):376-82. PubMed ID: 19127773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wig-1 regulates cell cycle arrest and cell death through the p53 targets FAS and 14-3-3σ.
    Bersani C; Xu LD; Vilborg A; Lui WO; Wiman KG
    Oncogene; 2014 Aug; 33(35):4407-17. PubMed ID: 24469038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc induces cell cycle arrest and apoptosis by upregulation of WIG-1 in esophageal squamous cancer cell line EC109.
    Guo W; Zou YB; Jiang YG; Wang RW; Zhao YP; Ma Z
    Tumour Biol; 2011 Aug; 32(4):801-8. PubMed ID: 21559779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of interactions between the double-stranded RNA-binding zinc finger protein JAZ and nucleic acids.
    Burge RG; Martinez-Yamout MA; Dyson HJ; Wright PE
    Biochemistry; 2014 Mar; 53(9):1495-510. PubMed ID: 24521053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wig-1, a novel regulator of N-Myc mRNA and N-Myc-driven tumor growth.
    Vilborg A; Bersani C; Wickström M; Segerström L; Kogner P; Wiman KG
    Cell Death Dis; 2012 Apr; 3(4):e298. PubMed ID: 22513872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic analysis of wig-1 pathways.
    Sedaghat Y; Mazur C; Sabripour M; Hung G; Monia BP
    PLoS One; 2012; 7(2):e29429. PubMed ID: 22347364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the p53 target Wig-1 is associated with HPV status and patient survival in cervical carcinoma.
    Xu LD; Muller S; Thoppe SR; Hellborg F; Kanter L; Lerner M; Zheng B; Lagercrantz SB; Grandér D; Wallin KL; Wiman KG; Larsson C; Andersson S
    PLoS One; 2014; 9(11):e111125. PubMed ID: 25379706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of the N-terminal zinc fingers of the Xenopus laevis double-stranded RNA-binding protein ZFa.
    Möller HM; Martinez-Yamout MA; Dyson HJ; Wright PE
    J Mol Biol; 2005 Aug; 351(4):718-30. PubMed ID: 16051273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production.
    Kandasamy SK; Fukunaga R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14031-14036. PubMed ID: 27872309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing.
    Myers JW; Jones JT; Meyer T; Ferrell JE
    Nat Biotechnol; 2003 Mar; 21(3):324-8. PubMed ID: 12592410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage.
    Landeo-Ríos Y; Navas-Castillo J; Moriones E; Cañizares MC
    Virology; 2016 Jan; 488():129-36. PubMed ID: 26629953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dicer efficiently converts large dsRNAs into siRNAs suitable for COX-2 gene].
    Luo H; Hu DX; Chen P
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Jun; 32(3):437-42. PubMed ID: 17611321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.