BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 1684414)

  • 21. Neurotransmission of the cochlear inner hair cell synapse--implications for inner ear therapy.
    Oestreicher E; Wolfgang A; Felix D
    Adv Otorhinolaryngol; 2002; 59():131-9. PubMed ID: 11885654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of spider venom on cochlear nerve activity consistent with glutamatergic transmission at hair cell-afferent dendrite synapse.
    Cousillas H; Cole KS; Johnstone BM
    Hear Res; 1988 Nov; 36(2-3):213-20. PubMed ID: 2905359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative actions of quisqualate and N-methyl-D-aspartate, excitatory amino acid agonists, on guinea-pig cochlear potentials.
    Jenison GL; Winbery S; Bobbin RP
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 84(2):385-9. PubMed ID: 2874954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cerebellar excitatory amino acid binding sites in normal, granuloprival, and Purkinje cell-deficient mice.
    Makowiec RL; Cha JJ; Penney JB; Young AB
    Neuroscience; 1991; 42(3):671-81. PubMed ID: 1683473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs.
    Oestreicher E; Arnold W; Ehrenberger K; Felix D
    Hear Res; 1997 May; 107(1-2):46-52. PubMed ID: 9165346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig.
    Ruel J; Chen C; Pujol R; Bobbin RP; Puel JL
    J Physiol; 1999 Aug; 518 ( Pt 3)(Pt 3):667-80. PubMed ID: 10420005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implication of non-NMDA and NMDA receptors in cochlear ischemia.
    Pujol R; Puel JL; Eybalin M
    Neuroreport; 1992 Apr; 3(4):299-302. PubMed ID: 1355370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developmental changes in the effects of drugs acting at NMDA or non-NMDA receptors on synaptic transmission in the chick cochlear nucleus (nuc. magnocellularis).
    Zhou N; Parks TN
    Brain Res Dev Brain Res; 1992 Jun; 67(2):145-52. PubMed ID: 1380899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Horizontal cells isolated from catfish retina contain two types of excitatory amino acid receptors.
    O'Dell TJ; Christensen BN
    J Neurophysiol; 1989 Jun; 61(6):1097-109. PubMed ID: 2473174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMDA and kainic acid receptors have a complementary distribution to AMPA receptors in the human cerebellum.
    Jansen KL; Faull RL; Dragunow M
    Brain Res; 1990 Nov; 532(1-2):351-4. PubMed ID: 2178036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of prenatal ethanol exposure on hippocampal ionotropic-quisqualate and kainate receptors.
    Martin D; Savage DD; Swartzwelder HS
    Alcohol Clin Exp Res; 1992 Aug; 16(4):816-21. PubMed ID: 1382392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn.
    Bleakman D; Rusin KI; Chard PS; Glaum SR; Miller RJ
    Mol Pharmacol; 1992 Aug; 42(2):192-6. PubMed ID: 1381041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuropeptide Y release from cultured hippocampal neurons: stimulation by glutamate acting at N-methyl-D-aspartate and AMPA receptors.
    Gemignani A; Marchese S; Fontana G; Raiteri M
    Neuroscience; 1997 Nov; 81(1):23-31. PubMed ID: 9300398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamate stimulates glucagon secretion via an excitatory amino acid receptor of the AMPA subtype in rat pancreas.
    Bertrand G; Gross R; Puech R; Loubatières-Mariani MM; Bockaert J
    Eur J Pharmacol; 1993 Jun; 237(1):45-50. PubMed ID: 7689469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization.
    Pittaluga A; Raiteri M
    J Pharmacol Exp Ther; 1992 Jan; 260(1):232-7. PubMed ID: 1370540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea.
    Puel JL; Saffiedine S; Gervais d'Aldin C; Eybalin M; Pujol R
    C R Acad Sci III; 1995 Jan; 318(1):67-75. PubMed ID: 7538893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology.
    Verdoorn TA; Dingledine R
    Mol Pharmacol; 1988 Sep; 34(3):298-307. PubMed ID: 2901662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic repair mechanisms responsible for functional recovery in various cochlear pathologies.
    Puel JL; d'Aldin C; Ruel J; Ladrech S; Pujol R
    Acta Otolaryngol; 1997 Mar; 117(2):214-8. PubMed ID: 9105452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of non-N-methyl-D-aspartate receptors in cultured cerebellar granule cells.
    Gallo V; Giovannini C; Levi G
    J Neurochem; 1990 May; 54(5):1619-25. PubMed ID: 1969937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antisense oligonucleotides to the GluR2 AMPA receptor subunit modify excitatory synaptic transmission in vivo.
    d'Aldin C; Caicedo A; Ruel J; Renard N; Pujol R; Puel JL
    Brain Res Mol Brain Res; 1998 Mar; 55(1):151-64. PubMed ID: 9645970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.