BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 16844156)

  • 1. Doppler ultrasound signals simulation from vessels with various stenosis degrees.
    Fang X; Wang Y; Wang W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e173-7. PubMed ID: 16844156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compound Doppler ultrasound signal simulation for pulsatile carotid arteries with a stenosis.
    Gao L; Zhang Y; Zhou Y; Hu X; Deng L; Zhang K; Cai G; Zhang J
    Biomed Mater Eng; 2016 Aug; 27(2-3):131-48. PubMed ID: 27567770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer simulation model for Doppler ultrasound signals from pulsatile blood flow in stenosed vessels.
    Gao L; Zhang Y; Zhang K; Cai G; Zhang J; Shi X
    Comput Biol Med; 2012 Sep; 42(9):906-14. PubMed ID: 22841363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of blood flow velocity through the internal carotid artery based on Doppler ultrasound and numerical simulation.
    Hassani-Ardekani H; Ghalichi F; Niroomand-Oscuii H; Farhoudi M; Tarzmani MK
    Australas Phys Eng Sci Med; 2012 Dec; 35(4):413-22. PubMed ID: 23055127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate blood peak velocity estimation using spectral models and vector doppler.
    Ricci S; Vilkomerson D; Matera R; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):686-96. PubMed ID: 25881346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.
    Park DW; Kruger GH; Rubin JM; Hamilton J; Gottschalk P; Dodde RE; Shih AJ; Weitzel WF
    J Ultrasound Med; 2013 Oct; 32(10):1815-30. PubMed ID: 24065263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound imaging velocimetry: effect of beam sweeping on velocity estimation.
    Zhou B; Fraser KH; Poelma C; Mari JM; Eckersley RJ; Weinberg PD; Tang MX
    Ultrasound Med Biol; 2013 Sep; 39(9):1672-81. PubMed ID: 23791353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vector-velocity estimation in swept-scan using a K-space approach.
    Jeng GS; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):947-58. PubMed ID: 16764449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise reduction in Doppler ultrasound signals using an adaptive decomposition algorithm.
    Zhang Y; Wang L; Gao Y; Chen J; Shi X
    Med Eng Phys; 2007 Jul; 29(6):699-707. PubMed ID: 16996774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High frame rate doppler ultrasound bandwidth imaging for flow instability mapping.
    Yiu BYS; Chee AJY; Tang G; Luo W; Yu ACH
    Med Phys; 2019 Apr; 46(4):1620-1633. PubMed ID: 30734923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulator for mixed Doppler ultrasound signals from pulsatile blood flow and vessel wall with mild stenosis.
    Zhang Y; Gao L; Shen K; Zhang K; Yan J; Cheng W; Zhang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1903-6. PubMed ID: 24110084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coded ultrasound for blood flow estimation using subband processing.
    Gran F; Udesen J; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of transverse oscillation method.
    Udesen J; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):959-71. PubMed ID: 16764450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of spectral resolution and angle dependency in a 2-D tracking Doppler method.
    Fredriksen TD; Avdal J; Ekroll IK; Dahl T; Lovstakken L; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jul; 61(7):1161-70. PubMed ID: 24960705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of arterial distension based on continuous wave Doppler ultrasound with an improved Hilbert-Huang processing.
    Zhang Y; Su N; Li Z; Gou Z; Chen Q; Zhang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):203-13. PubMed ID: 20040447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-scale removal of "wall thump" in Doppler ultrasound signals: a simulation study.
    Zhang Y; Cardoso JC; Wang Y; Fish PJ; Bastos CA; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Sep; 51(9):1187-92. PubMed ID: 15478981
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of carotid artery blood velocity measurements by vector and standard Doppler approaches.
    Tortoli P; Lenge M; Righi D; Ciuti G; Liebgott H; Ricci S
    Ultrasound Med Biol; 2015 May; 41(5):1354-62. PubMed ID: 25722028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):293-306. PubMed ID: 15121001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of gain adjustment on 3-dimensional power Doppler indices and on spatiotemporal image correlation volumetric pulsatility indices using a flow phantom.
    Miyague AH; Raine-Fenning NJ; Pavan TZ; Polanski LT; Baumgarten MN; Nastri CO; Martins WP
    J Ultrasound Med; 2013 Oct; 32(10):1831-6. PubMed ID: 24065264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise reduction for doppler ultrasound signal based on the adapted local cosine transform and the garrote thresholding method.
    Wang X; Shen Y; Liu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):735-45. PubMed ID: 16615577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.