These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16844186)

  • 1. Formation of bromo-substituted triclosan during chlorination by chlorine in the presence of trace levels of bromide.
    Inaba K; Doi T; Isobe N; Yamamoto T
    Water Res; 2006 Aug; 40(15):2931-7. PubMed ID: 16844186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorination of Irgasan DP300 and formation of dioxins from its chlorinated derivatives.
    Kanetoshi A; Ogawa H; Katsura E; Kaneshima H
    J Chromatogr; 1987 Feb; 389(1):139-53. PubMed ID: 3571350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bromide on the formation of disinfection by-products during wastewater chlorination.
    Sun YX; Wu QY; Hu HY; Tian J
    Water Res; 2009 May; 43(9):2391-8. PubMed ID: 19345975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time detection and identification of aqueous chlorine transformation products using QTOF MS.
    Vanderford BJ; Mawhinney DB; Rosario-Ortiz FL; Snyder SA
    Anal Chem; 2008 Jun; 80(11):4193-9. PubMed ID: 18465880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl(-) and Br(-) on trihalomethane formation potential.
    Navalon S; Alvaro M; Garcia H
    Water Res; 2008 Aug; 42(14):3990-4000. PubMed ID: 18692215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorpyrifos transformation by aqueous chlorine in the presence of bromide and natural organic matter.
    Duirk SE; Tarr JC; Collette TW
    J Agric Food Chem; 2008 Feb; 56(4):1328-35. PubMed ID: 18237132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of BrCl, Br₂, BrOCl, Br₂O, and HOBr toward dimethenamid in solutions of bromide + aqueous free chlorine.
    Sivey JD; Arey JS; Tentscher PR; Roberts AL
    Environ Sci Technol; 2013 Feb; 47(3):1330-8. PubMed ID: 23323704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bromide affecting drinking water mutagenicity.
    Myllykangas T; Nissinen TK; Mäki-Paakkanen J; Hirvonen A; Vartiainen T
    Chemosphere; 2003 Nov; 53(7):745-56. PubMed ID: 13129514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorination of bisphenol A: kinetics and by-products formation.
    Gallard H; Leclercq A; Croué JP
    Chemosphere; 2004 Aug; 56(5):465-73. PubMed ID: 15212912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of pyrene in aqueous chlorination in the presence and absence of bromide ion: kinetics, products, and their aryl hydrocarbon receptor-mediated activities.
    Hu J; Jin X; Kunikane S; Terao Y; Aizawa T
    Environ Sci Technol; 2006 Jan; 40(2):487-93. PubMed ID: 16468393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan.
    Rule KL; Ebbett VR; Vikesland PJ
    Environ Sci Technol; 2005 May; 39(9):3176-85. PubMed ID: 15926568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of coexisting anions on removal of bromide in drinking water by coagulation.
    Ge F; Zhu L
    J Hazard Mater; 2008 Mar; 151(2-3):676-81. PubMed ID: 17658214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of adducts formed in reaction of adenosine with 3-chloro-4-methyl-5-hydroxy-2(5H)-furanone, a bacterial mutagen present in chloride disinfected drinking water.
    Munter T; Kronberg L; Sjöholm R
    Chem Res Toxicol; 1996 Jun; 9(4):703-8. PubMed ID: 8831813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiestrogenic activity and related disinfection by-product formation induced by bromide during chlorine disinfection of sewage secondary effluent.
    Wu QY; Tang X; Huang H; Li Y; Hu HY; Ding YN; Shao YR
    J Hazard Mater; 2014 May; 273():280-6. PubMed ID: 24751494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of polychlorinated dibenzo-p-dioxins upon combustion of commercial textile products containing 2,4,4'-trichloro-2'-hydroxydiphenyl ether (Irgasan DP300).
    Kanetoshi A; Ogawa H; Katsura E; Kaneshima H; Miura T
    J Chromatogr; 1988 Jun; 442():289-99. PubMed ID: 3417820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of halogen(I) cation-transfer mechanisms in water chlorination in the presence of bromide ion.
    Margerum DW; Huff H
    J Environ Monit; 2002 Feb; 4(1):20-6. PubMed ID: 11871704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of levels and fate of triclosan in environmental waters from the analysis of gas chromatography coupled with ion trap mass spectrometry.
    Chau WC; Wu JL; Cai Z
    Chemosphere; 2008 Aug; 73(1 Suppl):S13-7. PubMed ID: 18440583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of triclosan by an integrated nano-bio redox process.
    Bokare V; Murugesan K; Kim YM; Jeon JR; Kim EJ; Chang YS
    Bioresour Technol; 2010 Aug; 101(16):6354-60. PubMed ID: 20381343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous determination of chlorinated bacteriostats in cosmetic and pharmaceutical products.
    Wang LH; Tso M; Chin CY
    J Cosmet Sci; 2005; 56(3):183-92. PubMed ID: 16116523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of iodoacetic acids during cooking: interaction of iodized table salt with chlorinated drinking water.
    Becalski A; Lau BP; Schrader TJ; Seaman SW; Sun WF
    Food Addit Contam; 2006 Oct; 23(10):957-62. PubMed ID: 16982516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.