These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 16844263)

  • 1. Release of colloidal particles in natural porous media by monovalent and divalent cations.
    Grolimund D; Borkovec M
    J Contam Hydrol; 2006 Oct; 87(3-4):155-75. PubMed ID: 16844263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.
    Kanti Sen T; Khilar KC
    Adv Colloid Interface Sci; 2006 Feb; 119(2-3):71-96. PubMed ID: 16324681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling colloid-facilitated transport of multi-species contaminants in unsaturated porous media.
    Massoudieh A; Ginn TR
    J Contam Hydrol; 2007 Jul; 92(3-4):162-83. PubMed ID: 17293000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloid facilitated transport of strongly sorbing contaminants in natural porous media: mathematical modeling and laboratory column experiments.
    Grolimund D; Borkovec M
    Environ Sci Technol; 2005 Sep; 39(17):6378-86. PubMed ID: 16190190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of particle shape on colloid retention and release in saturated porous media.
    Liu Q; Lazouskaya V; He Q; Jin Y
    J Environ Qual; 2010; 39(2):500-8. PubMed ID: 20176823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of counterion association in colloidal stability.
    Ehrl L; Jia Z; Wu H; Lattuada M; Soos M; Morbidelli M
    Langmuir; 2009 Mar; 25(5):2696-702. PubMed ID: 19437751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloid straining within saturated heterogeneous porous media.
    Porubcan AA; Xu S
    Water Res; 2011 Feb; 45(4):1796-806. PubMed ID: 21185052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloid mobilization and arsenite transport in soil columns: effect of ionic strength.
    Zhang H; Selim HM
    J Environ Qual; 2007; 36(5):1273-80. PubMed ID: 17636288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered transport of lindane caused by the retention of natural particles in saturated porous media.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal transport and agglomeration in column studies for advanced run-off filtration facilities--particle size and time resolved monitoring of effluents with flow-field-flow-fractionation.
    Siepmann R; von der Kammer F; Förstner U
    Water Sci Technol; 2004; 50(12):95-102. PubMed ID: 15686008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach.
    Tosco T; Sethi R
    Environ Sci Technol; 2010 Dec; 44(23):9062-8. PubMed ID: 21058641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of kaolinite colloids through quartz sand: influence of humic acid, Ca(2+), and trace metals.
    Akbour RA; Douch J; Hamdani M; Schmitz P
    J Colloid Interface Sci; 2002 Sep; 253(1):1-8. PubMed ID: 16290824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ionic strength and cation charge on transport of colloidal particles in fractured shale saprolite.
    McCarthy JF; McKay LD; Bruner DD
    Environ Sci Technol; 2002 Sep; 36(17):3735-43. PubMed ID: 12322745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of various monovalent cations and calcium ion on the colloidal fouling potential.
    Song L; Singh G
    J Colloid Interface Sci; 2005 Sep; 289(2):479-87. PubMed ID: 16112231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions.
    Tufenkji N; Elimelech M
    Langmuir; 2004 Dec; 20(25):10818-28. PubMed ID: 15568829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: effects of Cu, ionic strength, and ionic composition.
    Wang D; Chu L; Paradelo M; Peijnenburg WJ; Wang Y; Zhou D
    J Colloid Interface Sci; 2011 Aug; 360(2):398-407. PubMed ID: 21612786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An agglomeration-based model for colloid filtration.
    Chatterjee J; Gupta SK
    Environ Sci Technol; 2009 May; 43(10):3694-9. PubMed ID: 19544875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion through colloidosome shells.
    Rosenberg RT; Dan NR
    J Colloid Interface Sci; 2011 Feb; 354(2):478-82. PubMed ID: 21122874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contaminant transport in groundwater in the presence of colloids and bacteria: model development and verification.
    Bekhit HM; El-Kordy MA; Hassan AE
    J Contam Hydrol; 2009 Sep; 108(3-4):152-67. PubMed ID: 19695736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.