These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 16844348)
1. Identification of amino acids essential for catalytic activity of pneumococcal neuraminidase A. Yesilkaya H; Soma-Haddrick S; Crennell SJ; Andrew PW Res Microbiol; 2006; 157(6):569-74. PubMed ID: 16844348 [TBL] [Abstract][Full Text] [Related]
2. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Janesch P; Rouha H; Badarau A; Stulik L; Mirkina I; Caccamo M; Havlicek K; Maierhofer B; Weber S; Groß K; Steinhäuser J; Zerbs M; Varga C; Dolezilkova I; Maier S; Zauner G; Nielson N; Power CA; Nagy E Virulence; 2018; 9(1):1521-1538. PubMed ID: 30289054 [TBL] [Abstract][Full Text] [Related]
3. Elucidation of the role of functional amino acid residues of the small sialidase from Clostridium perfringens by site-directed mutagenesis. Kleineidam RG; Kruse S; Roggentin P; Schauer R Biol Chem; 2001 Feb; 382(2):313-9. PubMed ID: 11308029 [TBL] [Abstract][Full Text] [Related]
4. Neuraminidase A from Streptococcus pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker. Sharapova Y; Suplatov D; Švedas V FEBS J; 2018 Jul; 285(13):2428-2445. PubMed ID: 29704878 [TBL] [Abstract][Full Text] [Related]
5. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. Orihuela CJ; Gao G; Francis KP; Yu J; Tuomanen EI J Infect Dis; 2004 Nov; 190(9):1661-9. PubMed ID: 15478073 [TBL] [Abstract][Full Text] [Related]
6. Catalytic and lectin domains in neuraminidase A from Streptococcus pneumoniae are capable of an intermolecular assembly: Implications for biofilm formation. Sharapova Y; Švedas V; Suplatov D FEBS J; 2021 May; 288(10):3217-3230. PubMed ID: 33108702 [TBL] [Abstract][Full Text] [Related]
7. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis. Rhimi M; Juy M; Aghajari N; Haser R; Bejar S J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581 [TBL] [Abstract][Full Text] [Related]
9. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis. Lassila JK; Keeffe JR; Kast P; Mayo SL Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527 [TBL] [Abstract][Full Text] [Related]
11. Role of Pneumococcal NanA Neuraminidase Activity in Peripheral Blood. Syed S; Hakala P; Singh AK; Lapatto HAK; King SJ; Meri S; Jokiranta TS; Haapasalo K Front Cell Infect Microbiol; 2019; 9():218. PubMed ID: 31297339 [TBL] [Abstract][Full Text] [Related]
12. Desialylation of Platelets by Pneumococcal Neuraminidase A Induces ADP-Dependent Platelet Hyperreactivity. Kullaya V; de Jonge MI; Langereis JD; van der Gaast-de Jongh CE; Büll C; Adema GJ; Lefeber D; Cremers AJ; Mmbaga BT; de Groot PG; de Mast Q; van der Ven AJ Infect Immun; 2018 Oct; 86(10):. PubMed ID: 30037798 [TBL] [Abstract][Full Text] [Related]
13. Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence. Kahya HF; Andrew PW; Yesilkaya H PLoS Pathog; 2017 Mar; 13(3):e1006263. PubMed ID: 28257499 [TBL] [Abstract][Full Text] [Related]
14. Two crystal structures of pneumococcal pilus sortase C provide novel insights into catalysis and substrate specificity. Neiers F; Madhurantakam C; Fälker S; Manzano C; Dessen A; Normark S; Henriques-Normark B; Achour A J Mol Biol; 2009 Oct; 393(3):704-16. PubMed ID: 19729023 [TBL] [Abstract][Full Text] [Related]
15. Function of conserved aromatic residues in the Gal/GalNAc-glycosyltransferase motif of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1. Tenno M; Saeki A; Elhammer AP; Kurosaka A FEBS J; 2007 Dec; 274(23):6037-45. PubMed ID: 17970754 [TBL] [Abstract][Full Text] [Related]
16. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Paton JC; Andrew PW; Boulnois GJ; Mitchell TJ Annu Rev Microbiol; 1993; 47():89-115. PubMed ID: 7903033 [TBL] [Abstract][Full Text] [Related]
18. Identification of residues essential for the catalytic activity of Sec11b, one of the two type I signal peptidases of Haloferax volcanii. Fink-Lavi E; Eichler J FEMS Microbiol Lett; 2008 Jan; 278(2):257-60. PubMed ID: 18067576 [TBL] [Abstract][Full Text] [Related]
19. The atypical amino-terminal LPNTG-containing domain of the pneumococcal human IgA1-specific protease is required for proper enzyme localization and function. Bender MH; Weiser JN Mol Microbiol; 2006 Jul; 61(2):526-43. PubMed ID: 16776657 [TBL] [Abstract][Full Text] [Related]
20. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. King SJ; Hippe KR; Gould JM; Bae D; Peterson S; Cline RT; Fasching C; Janoff EN; Weiser JN Mol Microbiol; 2004 Oct; 54(1):159-71. PubMed ID: 15458413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]