BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16844626)

  • 21. Hypothermic low-flow cardiopulmonary bypass impairs pulmonary and right ventricular function more than circulatory arrest.
    Schultz JM; Karamlou T; Swanson J; Shen I; Ungerleider RM
    Ann Thorac Surg; 2006 Feb; 81(2):474-80; discussion 480. PubMed ID: 16427835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antegrade selective cerebral perfusion combined with deep hypothermic circulatory arrest on cerebral circulation: comparison between pulsatile and nonpulsatile blood flows.
    Soeda M
    Ann Thorac Cardiovasc Surg; 2007 Apr; 13(2):93-101. PubMed ID: 17505416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hemodilution elevates cerebral blood flow and oxygen metabolism during cardiopulmonary bypass in piglets.
    Sakamoto T; Nollert GD; Zurakowski D; Soul J; Duebener LF; Sperling J; Nagashima M; Taylor G; DuPlessis AJ; Jonas RA
    Ann Thorac Surg; 2004 May; 77(5):1656-63; discussion 1663. PubMed ID: 15111160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypothermic circulatory arrest with and without cold selective antegrade cerebral perfusion: impact on neurological recovery and tissue metabolism in an acute porcine model.
    Hagl C; Khaladj N; Peterss S; Hoeffler K; Winterhalter M; Karck M; Haverich A
    Eur J Cardiothorac Surg; 2004 Jul; 26(1):73-80. PubMed ID: 15200982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass.
    Allibhai T; DiGeronimo R; Whitin J; Salazar J; Yu TT; Ling XB; Cohen H; Dixon P; Madan A
    J Thorac Cardiovasc Surg; 2009 Dec; 138(6):1290-6. PubMed ID: 19660276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overactivation of poly(adenosine phosphate-ribose) polymerase 1 and molecular events in neuronal injury after deep hypothermic circulatory arrest: study in a rabbit model.
    Pan X; Sun L; Ma W; Tang Y; Long C; Tian L; Liu N; Feng Z; Zheng J
    J Thorac Cardiovasc Surg; 2007 Nov; 134(5):1227-33. PubMed ID: 17976454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypothermic circulatory arrest with moderate, deep or profound hypothermic selective antegrade cerebral perfusion: which temperature provides best brain protection?
    Khaladj N; Peterss S; Oetjen P; von Wasielewski R; Hauschild G; Karck M; Haverich A; Hagl C
    Eur J Cardiothorac Surg; 2006 Sep; 30(3):492-8. PubMed ID: 16857368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved cerebral recovery from hypothermic circulatory arrest after remote ischemic preconditioning.
    Yannopoulos FS; Mäkelä T; Niemelä E; Tuominen H; Lepola P; Alestalo K; Kaakinen H; Kiviluoma K; Anttila V; Juvonen T
    Ann Thorac Surg; 2010 Jul; 90(1):182-8. PubMed ID: 20609771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH-stat versus alpha-stat perfusion strategy during experimental hypothermic circulatory arrest: a microdialysis study.
    Pokela M; Dahlbacka S; Biancari F; Vainionpää V; Salomäki T; Kiviluoma K; Rönkä E; Kaakinen T; Heikkinen J; Hirvonen J; Romsi P; Anttila V; Juvonen T
    Ann Thorac Surg; 2003 Oct; 76(4):1215-26. PubMed ID: 14530015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fructose-1,6-bisphosphate for improved outcome after hypothermic circulatory arrest in pigs.
    Romsi P; Kaakinen T; Kiviluoma K; Vainionpää V; Hirvonen J; Pokela M; Ohtonen P; Biancari F; Nuutinen M; Juvonen T
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):686-98. PubMed ID: 12658213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Levosimendan decreases intracranial pressure after hypothermic circulatory arrest in a porcine model.
    Jensen H; Eija R; Tuomas M; Jussi M; Fredrik Y; Kirsi A; Matti P; Kai K; Hannu T; Vesa A; Tatu J
    Scand Cardiovasc J; 2011 Oct; 45(5):307-15. PubMed ID: 21623682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature dependence of cerebral blood flow for isolated regions of the brain during selective cerebral perfusion in pigs.
    Strauch JT; Haldenwang PL; Müllem K; Schmalz M; Liakopoulos O; Christ H; Fischer JH; Wahlers T
    Ann Thorac Surg; 2009 Nov; 88(5):1506-13. PubMed ID: 19853102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biologically variable bypass reduces enzymuria after deep hypothermic circulatory arrest.
    Singal RK; Docking LM; Girling LG; Graham MR; Nickerson PW; McManus BM; Magil AB; Walker EK; Warrian RK; Cheang MS; Mutch WA
    Ann Thorac Surg; 2006 Oct; 82(4):1480-8. PubMed ID: 16996957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of a pH-stat strategy during retrograde cerebral perfusion improves cerebral perfusion and tissue oxygenation.
    Ye J; Li Z; Yang Y; Yang L; Turner A; Jackson M; Deslauriers R
    Ann Thorac Surg; 2004 May; 77(5):1664-70; discussion 1670. PubMed ID: 15111162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: description of a new model.
    Jungwirth B; Mackensen GB; Blobner M; Neff F; Reichart B; Kochs EF; Nollert G
    J Thorac Cardiovasc Surg; 2006 Apr; 131(4):805-12. PubMed ID: 16580438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep sedation with dexmedetomidine in a porcine model does not compromise the viability of free microvascular flap as depicted by microdialysis and tissue oxygen tension.
    Nunes S; Berg L; Raittinen LP; Ahonen H; Laranne J; Lindgren L; Parviainen I; Ruokonen E; Tenhunen J
    Anesth Analg; 2007 Sep; 105(3):666-72. PubMed ID: 17717221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing selective cerebral perfusion: deleterious effects of high perfusion pressures.
    Halstead JC; Meier M; Wurm M; Zhang N; Spielvogel D; Weisz D; Bodian C; Griepp RB
    J Thorac Cardiovasc Surg; 2008 Apr; 135(4):784-91. PubMed ID: 18374757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The methodologies of hypothermic circulatory arrest and of antegrade and retrograde cerebral perfusion for aortic arch surgery.
    Apostolakis E; Akinosoglou K
    Ann Thorac Cardiovasc Surg; 2008 Jun; 14(3):138-48. PubMed ID: 18577891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of profound hypothermia during circulatory arrest on neurologic injury and apoptotic repressor protein Bcl-2 expression in an acute porcine model.
    Ananiadou OG; Bibou K; Drossos GE; Charchanti A; Bai M; Haj-Yahia S; Anagnostopoulos CE; Johnson EO
    J Thorac Cardiovasc Surg; 2007 Apr; 133(4):919-26. PubMed ID: 17382626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leukocyte filtration to decrease the number of adherent leukocytes in the cerebral microcirculation after a period of deep hypothermic circulatory arrest.
    Alaoja H; Niemelä E; Anttila V; Dahlbacka S; Mäkelä J; Kiviluoma K; Laurila P; Kaakinen T; Juvonen T
    J Thorac Cardiovasc Surg; 2006 Dec; 132(6):1339-47. PubMed ID: 17140952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.