BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16844694)

  • 1. The mode of interaction of the relaxin-like factor (RLF) with the leucine-rich repeat G protein-activated receptor 8.
    Büllesbach EE; Schwabe C
    J Biol Chem; 2006 Sep; 281(36):26136-43. PubMed ID: 16844694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The "hot wires" of the relaxin-like factor (Insl3).
    Schwabe C; Büllesbach EE
    Ann N Y Acad Sci; 2009 Apr; 1160():93-8. PubMed ID: 19416166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining the LGR8 residues involved in binding insulin-like peptide 3.
    Scott DJ; Wilkinson TN; Zhang S; Ferraro T; Wade JD; Tregear GW; Bathgate RA
    Mol Endocrinol; 2007 Jul; 21(7):1699-712. PubMed ID: 17473281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan B27 in the relaxin-like factor (RLF) is crucial for RLF receptor-binding.
    Büllesbach EE; Schwabe C
    Biochemistry; 1999 Mar; 38(10):3073-8. PubMed ID: 10074360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LGR8 signal activation by the relaxin-like factor.
    Büllesbach EE; Schwabe C
    J Biol Chem; 2005 Apr; 280(15):14586-90. PubMed ID: 15708846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial cDNA sequence of a relaxin-like factor (RLF) receptor, LGR8 and possible existence of the RLF ligand-receptor system in goat testes.
    Siqin ; Nakai M; Hagi T; Kato S; Pitia AM; Kotani M; Odanaka Y; Sugawara Y; Hamano K; Yogo K; Nagura Y; Fujita M; Sasada H; Sato E; Kohsaka T
    Anim Sci J; 2010 Dec; 81(6):681-6. PubMed ID: 21108688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxin, the relaxin-like factor and their receptors.
    Schwabe C; Büllesbach EE
    Adv Exp Med Biol; 2007; 612():14-25. PubMed ID: 18161478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the transmembrane signal initiation site of the relaxin-like factor (RLF/INSL3).
    Büllesbach EE; Schwabe C
    Biochemistry; 2007 Aug; 46(34):9722-7. PubMed ID: 17676766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of a conformationally restricted fully active derivative of the human relaxin-like factor.
    Büllesbach EE; Hass MA; Jensen MR; Hansen DF; Kristensen SM; Schwabe C; Led JJ
    Biochemistry; 2008 Dec; 47(50):13308-17. PubMed ID: 19086273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) is secreted from testicular Leydig cells as a monomeric protein comprising three domains B-C-A with full biological activity in boars.
    Minagawa I; Fukuda M; Ishige H; Kohriki H; Shibata M; Park EY; Kawarasaki T; Kohsaka T
    Biochem J; 2012 Jan; 441(1):265-73. PubMed ID: 21899516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure and characterization of the LGR8 receptor binding surface of insulin-like peptide 3.
    Rosengren KJ; Zhang S; Lin F; Daly NL; Scott DJ; Hughes RA; Bathgate RA; Craik DJ; Wade JD
    J Biol Chem; 2006 Sep; 281(38):28287-95. PubMed ID: 16867980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic cross-links arrest the C-terminal region of the relaxin-like factor in an active conformation.
    Büllesbach EE; Schwabe C
    Biochemistry; 2004 Jun; 43(25):8021-8. PubMed ID: 15209497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors.
    Hossain MA; Rosengren KJ; Haugaard-Jönsson LM; Zhang S; Layfield S; Ferraro T; Daly NL; Tregear GW; Wade JD; Bathgate RA
    J Biol Chem; 2008 Jun; 283(25):17287-97. PubMed ID: 18434306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural and functional role of the B-chain C-terminal arginine in the relaxin-3 peptide antagonist, R3(BDelta23-27)R/I5.
    Hossain MA; Bathgate RA; Rosengren KJ; Shabanpoor F; Zhang S; Lin F; Tregear GW; Wade JD
    Chem Biol Drug Des; 2009 Jan; 73(1):46-52. PubMed ID: 19152634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and localization of RLF/ INSL3 receptor RXFP2 in boar testes.
    Kohsaka T; Sagata D; Minagawa I; Kohriki H; Pitia AM; Sugii Y; Morimoto M; Uera N; Shibata M; Sasada H; Hasegawa Y
    Ital J Anat Embryol; 2013; 118(1 Suppl):23-5. PubMed ID: 24640564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8).
    Halls ML; Bond CP; Sudo S; Kumagai J; Ferraro T; Layfield S; Bathgate RA; Summers RJ
    J Pharmacol Exp Ther; 2005 May; 313(2):677-87. PubMed ID: 15649866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2.
    Zhang S; Hughes RA; Bathgate RA; Shabanpoor F; Hossain MA; Lin F; van Lierop B; Robinson AJ; Wade JD
    Peptides; 2010 Sep; 31(9):1730-6. PubMed ID: 20570702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific, high affinity relaxin-like factor receptors.
    Büllesbach EE; Schwabe C
    J Biol Chem; 1999 Aug; 274(32):22354-8. PubMed ID: 10428805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analogs of insulin-like peptide 3 (INSL3) B-chain are LGR8 antagonists in vitro and in vivo.
    Del Borgo MP; Hughes RA; Bathgate RAD; Lin F; Kawamura K; Wade JD
    J Biol Chem; 2006 May; 281(19):13068-13074. PubMed ID: 16547350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of important residues of insulin-like peptide 5 and its receptor RXFP4 for ligand-receptor interactions.
    Wang XY; Guo YQ; Shao XX; Liu YL; Xu ZG; Guo ZY
    Arch Biochem Biophys; 2014 Sep; 558():127-32. PubMed ID: 25043977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.