These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 16845087)

  • 21. Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space.
    Gottstein D; Kirchner DK; Güntert P
    J Biomol NMR; 2012 Apr; 52(4):351-64. PubMed ID: 22351031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure validation by Calpha geometry: phi,psi and Cbeta deviation.
    Lovell SC; Davis IW; Arendall WB; de Bakker PI; Word JM; Prisant MG; Richardson JS; Richardson DC
    Proteins; 2003 Feb; 50(3):437-50. PubMed ID: 12557186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational analysis of protein structures derived from NMR data.
    MacArthur MW; Thornton JM
    Proteins; 1993 Nov; 17(3):232-51. PubMed ID: 8272423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PepBuild: a web server for building structure data of peptides/proteins.
    Singh B
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W559-61. PubMed ID: 15215449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction.
    Zhang T; Faraggi E; Zhou Y
    Proteins; 2010 Dec; 78(16):3353-62. PubMed ID: 20818661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations.
    Smith LJ; Bolin KA; Schwalbe H; MacArthur MW; Thornton JM; Dobson CM
    J Mol Biol; 1996 Jan; 255(3):494-506. PubMed ID: 8568893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information.
    Hudáky P; Perczel A
    J Comput Chem; 2005 Oct; 26(13):1307-17. PubMed ID: 15999335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure determination in "shiftless" solid state NMR of oriented protein samples.
    Yin Y; Nevzorov AA
    J Magn Reson; 2011 Sep; 212(1):64-73. PubMed ID: 21741286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure.
    Cheung MS; Maguire ML; Stevens TJ; Broadhurst RW
    J Magn Reson; 2010 Feb; 202(2):223-33. PubMed ID: 20015671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks.
    Cierpicki T; Otlewski J
    J Mol Biol; 2000 Oct; 302(5):1179-92. PubMed ID: 11183783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CUPSAT: prediction of protein stability upon point mutations.
    Parthiban V; Gromiha MM; Schomburg D
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W239-42. PubMed ID: 16845001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting 15N chemical shifts in proteins using the preceding residue-specific individual shielding surfaces from phi, psi i-1, and chi 1 torsion angles.
    Wang Y; Jardetzky O
    J Biomol NMR; 2004 Apr; 28(4):327-40. PubMed ID: 14872125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force.
    Kuszewski J; Clore GM
    J Magn Reson; 2000 Oct; 146(2):249-54. PubMed ID: 11001840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleic acid folding determined by mesoscale modeling and NMR spectroscopy: solution structure of d(GCGAAAGC).
    Santini GP; Cognet JA; Xu D; Singarapu KK; Hervé du Penhoat C
    J Phys Chem B; 2009 May; 113(19):6881-93. PubMed ID: 19374420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
    Shen Y; Delaglio F; Cornilescu G; Bax A
    J Biomol NMR; 2009 Aug; 44(4):213-23. PubMed ID: 19548092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MOBI: a web server to define and visualize structural mobility in NMR protein ensembles.
    Martin AJ; Walsh I; Tosatto SC
    Bioinformatics; 2010 Nov; 26(22):2916-7. PubMed ID: 20861031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein backbone angle prediction with machine learning approaches.
    Kuang R; Leslie CS; Yang AS
    Bioinformatics; 2004 Jul; 20(10):1612-21. PubMed ID: 14988121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The VMD-XPLOR visualization package for NMR structure refinement.
    Schwieters CD; Clore GM
    J Magn Reson; 2001 Apr; 149(2):239-44. PubMed ID: 11318623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.
    Hafsa NE; Arndt D; Wishart DS
    Nucleic Acids Res; 2015 Jul; 43(W1):W370-7. PubMed ID: 25979265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy.
    Franks WT; Wylie BJ; Stellfox SA; Rienstra CM
    J Am Chem Soc; 2006 Mar; 128(10):3154-5. PubMed ID: 16522090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.