These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 168451)

  • 1. Changes in brain cyclic AMP metabolism and acetylcholine and dopamine during narcotic dependence and withdrawal.
    Merali Z; Singhal RL; Hrdina PD; Ling GM
    Life Sci; 1975 Jun; 16(12):1889-94. PubMed ID: 168451
    [No Abstract]   [Full Text] [Related]  

  • 2. Possible role of cyclic AMP and dopamine in morphine tolerance and physical dependence.
    Mehta CS; Johnson WE
    Life Sci; 1975 Jun; 16(12):1883-8. PubMed ID: 168450
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of prostaglandins and morphine on brain adenylyl cyclase.
    Van Inwegen RG; Strada SJ; Robinson GA
    Life Sci; 1975 Jun; 16(12):1875-6. PubMed ID: 1171346
    [No Abstract]   [Full Text] [Related]  

  • 4. Alterations in striatal acetylcholine, acetylcholine esterase and dopamine after methadone replacement in morphine-dependent rats.
    Merali Z; Ghosh PK; Hrdina PD; Singhal RL; Ling GM
    Eur J Pharmacol; 1974 May; 26(2):375-8. PubMed ID: 4859206
    [No Abstract]   [Full Text] [Related]  

  • 5. Narcotic dependence, narcotic action and dopamine receptors.
    Lal H
    Life Sci; 1975 Aug; 17(4):483-95. PubMed ID: 171531
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of diltiazem, a Ca2+ channel blocker, on naloxone-precipitated changes in dopamine and its metabolites in the brains of opioid-dependent rats.
    Tokuyama S; Ho IK
    Psychopharmacology (Berl); 1996 May; 125(2):135-40. PubMed ID: 8783387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostaglandin E2, cyclic adenosine monophosphate and morphine analgesia.
    Vonvoigtlander PF; Losey EG
    Brain Res; 1977 Jun; 128(2):275-83. PubMed ID: 194655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroanatomical correlates of morphine dependence.
    Wei E; Loh HH; Way EL
    Science; 1972 Aug; 177(4049):616-7. PubMed ID: 4558902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of cyclic AMP systems in morphine physical dependence in mice: prevention of development of morphine dependence by rolipram, a phosphodiesterase 4 inhibitor.
    Mamiya T; Noda Y; Ren X; Hamdy M; Furukawa S; Kameyama T; Yamada K; Nabeshima T
    Br J Pharmacol; 2001 Mar; 132(5):1111-7. PubMed ID: 11226142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of narcotic dependence and withdrawal on striatal dopamine-sensitive adenylate cyclase and synaptosomal cyclic AMP metabolism.
    Merali Z; Tsang B; Singhal RL; Hrdina PD
    Res Commun Chem Pathol Pharmacol; 1976 May; 14(1):29-37. PubMed ID: 180579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol-induced changes in activities of adenylate cyclase, guanylate cyclase and cyclic adenosine 3',5'-monophosphate dependent protein kinase in the brain and liver.
    Kuriyama K
    Drug Alcohol Depend; 1977; 2(5-6):335-48. PubMed ID: 21064
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of G protein-coupled receptor kinase 2 in brains of opiate-treated rats and human opiate addicts.
    Ozaita A; Escribá PV; Ventayol P; Murga C; Mayor F; García-Sevilla JA
    J Neurochem; 1998 Mar; 70(3):1249-57. PubMed ID: 9489748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function.
    Terwilliger RZ; Beitner-Johnson D; Sevarino KA; Crain SM; Nestler EJ
    Brain Res; 1991 May; 548(1-2):100-10. PubMed ID: 1651140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of cyclic AMP-specific phosphodiesterase 4 activation during naloxone-precipitated morphine withdrawal in rats.
    Kimura M; Tokumura M; Itoh T; Inoue O; Abe K
    Neurosci Lett; 2006 Aug; 404(1-2):107-11. PubMed ID: 16753260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible role of brain histamine in morphine addiction.
    Henwood RW; Mazurikiewicz-Kwilecki IM
    Life Sci; 1975 Jul; 17(1):55-6. PubMed ID: 1170474
    [No Abstract]   [Full Text] [Related]  

  • 16. Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine.
    Clouet DH; Iwatsubo K
    Life Sci; 1975 Jul; 17(1):35-40. PubMed ID: 238090
    [No Abstract]   [Full Text] [Related]  

  • 17. An analysis at synaptic level of the morphine action in striatum and N. accumbens: dopamine and acetylcholine interactions.
    Costa E; Cheney DL; Racagni G; Zsilla G
    Life Sci; 1975 Jul; 17(1):1-8. PubMed ID: 167253
    [No Abstract]   [Full Text] [Related]  

  • 18. Prostaglandins, cyclic AMP and the mechanism of opiate dependence.
    Collier HO; Francis DL; McDonald-Gibson WJ; Roy AC; Saeed SA
    Life Sci; 1975 Jul; 17(1):85-90. PubMed ID: 167256
    [No Abstract]   [Full Text] [Related]  

  • 19. Dopamine-dependent increases in phosphorylation of cAMP response element binding protein (CREB) during precipitated morphine withdrawal in primary cultures of rat striatum.
    Chartoff EH; Papadopoulou M; Konradi C; Carlezon WA
    J Neurochem; 2003 Oct; 87(1):107-18. PubMed ID: 12969258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-lasting reciprocal changes in striatal dopamine and acetylcholine release upon morphine withdrawal.
    Tjon Tien Ril HK; De Vries TJ; Wardeh G; Hogenboom F; Mulder AH; Schoffelmeer AN
    Eur J Pharmacol; 1993 Apr; 235(2-3):321-2. PubMed ID: 8508912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.