BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 16845387)

  • 1. G(o) signaling is required for Drosophila associative learning.
    Ferris J; Ge H; Liu L; Roman G
    Nat Neurosci; 2006 Aug; 9(8):1036-40. PubMed ID: 16845387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G(o) activation is required for both appetitive and aversive memory acquisition in Drosophila.
    Madalan A; Yang X; Ferris J; Zhang S; Roman G
    Learn Mem; 2012 Jan; 19(1):26-34. PubMed ID: 22190729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles for Drosophila mushroom body neurons in olfactory learning and memory.
    Akalal DB; Wilson CF; Zong L; Tanaka NK; Ito K; Davis RL
    Learn Mem; 2006; 13(5):659-68. PubMed ID: 16980542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types.
    Blum AL; Li W; Cressy M; Dubnau J
    Curr Biol; 2009 Aug; 19(16):1341-50. PubMed ID: 19646879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons.
    Xu S; Chan T; Shah V; Zhang S; Pletcher SD; Roman G
    Genes Brain Behav; 2012 Aug; 11(6):727-39. PubMed ID: 22624869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic inhibition of gamma lobe neurons is required for olfactory learning in Drosophila.
    Zhang S; Roman G
    Curr Biol; 2013 Dec; 23(24):2519-27. PubMed ID: 24291093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A distinct set of Drosophila brain neurons required for neurofibromatosis type 1-dependent learning and memory.
    Buchanan ME; Davis RL
    J Neurosci; 2010 Jul; 30(30):10135-43. PubMed ID: 20668197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal rescue of memory dysfunction in Drosophila.
    McGuire SE; Le PT; Osborn AJ; Matsumoto K; Davis RL
    Science; 2003 Dec; 302(5651):1765-8. PubMed ID: 14657498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gilgamesh is required for rutabaga-independent olfactory learning in Drosophila.
    Tan Y; Yu D; Pletting J; Davis RL
    Neuron; 2010 Sep; 67(5):810-20. PubMed ID: 20826312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune Receptor Signaling and the Mushroom Body Mediate Post-ingestion Pathogen Avoidance.
    Kobler JM; Rodriguez Jimenez FJ; Petcu I; Grunwald Kadow IC
    Curr Biol; 2020 Dec; 30(23):4693-4709.e3. PubMed ID: 33007248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity-driven individualization of olfactory coding in mushroom body output neurons.
    Hige T; Aso Y; Rubin GM; Turner GC
    Nature; 2015 Oct; 526(7572):258-62. PubMed ID: 26416731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning.
    Sabandal JM; Sabandal PR; Kim YC; Han KA
    J Neurosci; 2020 May; 40(21):4240-4250. PubMed ID: 32277043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase.
    Gervasi N; Tchénio P; Preat T
    Neuron; 2010 Feb; 65(4):516-29. PubMed ID: 20188656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila.
    Qin H; Cressy M; Li W; Coravos JS; Izzi SA; Dubnau J
    Curr Biol; 2012 Apr; 22(7):608-14. PubMed ID: 22425153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging behavior and physiology: ion-channel perspective on mushroom body-dependent olfactory learning and memory in Drosophila.
    Gasque G; Labarca P; Delgado R; Darszon A
    J Cell Physiol; 2006 Dec; 209(3):1046-53. PubMed ID: 16924658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular site and molecular mode of synapsin action in associative learning.
    Michels B; Chen YC; Saumweber T; Mishra D; Tanimoto H; Schmid B; Engmann O; Gerber B
    Learn Mem; 2011; 18(5):332-44. PubMed ID: 21518740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila.
    Schwaerzel M; Monastirioti M; Scholz H; Friggi-Grelin F; Birman S; Heisenberg M
    J Neurosci; 2003 Nov; 23(33):10495-502. PubMed ID: 14627633
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Turrel O; Rabah Y; Plaçais PY; Goguel V; Preat T
    J Neurosci; 2020 May; 40(21):4219-4229. PubMed ID: 32303647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The differential requirement of mushroom body α/β subdivisions in long-term memory retrieval in Drosophila.
    Huang C; Wang P; Xie Z; Wang L; Zhong Y
    Protein Cell; 2013 Jul; 4(7):512-9. PubMed ID: 23722532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel paradigm for nonassociative long-term memory in Drosophila: predator-induced changes in oviposition behavior.
    Kacsoh BZ; Bozler J; Hodge S; Ramaswami M; Bosco G
    Genetics; 2015 Apr; 199(4):1143-57. PubMed ID: 25633088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.