These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 1684551)
1. Fragmentation of proteins by S. aureus strain V8 protease. Ammonium bicarbonate strongly inhibits the enzyme but does not improve the selectivity for glutamic acid. Sørensen SB; Sørensen TL; Breddam K FEBS Lett; 1991 Dec; 294(3):195-7. PubMed ID: 1684551 [TBL] [Abstract][Full Text] [Related]
2. Isolation and amino acid sequence of a glutamic acid specific endopeptidase from Bacillus licheniformis. Svendsen I; Breddam K Eur J Biochem; 1992 Feb; 204(1):165-71. PubMed ID: 1346764 [TBL] [Abstract][Full Text] [Related]
3. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Houmard J; Drapeau GR Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3506-9. PubMed ID: 4509307 [TBL] [Abstract][Full Text] [Related]
4. Limited digestion of guinea pig myelin basic protein and its carboxy-terminal fragment (residues 89-169) with Staphylococcus aureus V8 protease. Diebler GE; Nomura K; Kies MW J Neurochem; 1982 Oct; 39(4):1090-100. PubMed ID: 6181193 [TBL] [Abstract][Full Text] [Related]
5. Purification and amino acid sequence of a bitter gourd inhibitor against an acidic amino acid-specific endopeptidase of Streptomyces griseus. Ogata F; Miyata T; Fujii N; Yoshida N; Noda K; Makisumi S; Ito A J Biol Chem; 1991 Sep; 266(25):16715-21. PubMed ID: 1679433 [TBL] [Abstract][Full Text] [Related]
6. Subsite mapping of an acidic amino acid-specific endopeptidase from Streptomyces griseus, GluSGP, and protease V8. Nagata K; Yoshida N; Ogata F; Araki M; Noda K J Biochem; 1991 Dec; 110(6):859-62. PubMed ID: 1794975 [TBL] [Abstract][Full Text] [Related]
7. Substrate preferences of glutamic-acid-specific endopeptidases assessed by synthetic peptide substrates based on intramolecular fluorescence quenching. Breddam K; Meldal M Eur J Biochem; 1992 May; 206(1):103-7. PubMed ID: 1587264 [TBL] [Abstract][Full Text] [Related]
8. Purification, characterization and gene cloning of a novel glutamic acid-specific endopeptidase from Staphylococcus aureus ATCC 12600. Yoshikawa K; Tsuzuki H; Fujiwara T; Nakamura E; Iwamoto H; Matsumoto K; Shin M; Yoshida N; Teraoka H Biochim Biophys Acta; 1992 May; 1121(1-2):221-8. PubMed ID: 1599945 [TBL] [Abstract][Full Text] [Related]
9. Cleavage by protease from Staphylococcus aureus V8: an improvement in the sequence analysis of human hemoglobin variants. Vasseur C; Galacteros F; Groff P; Wajcman H J Biochem Biophys Methods; 1991 Apr; 22(3):195-205. PubMed ID: 1865052 [TBL] [Abstract][Full Text] [Related]
10. Improvement of Staphylococcus aureus-V8-protease hydrolysis of bovine haemoglobin by its adsorption on to a solid phase in the presence of SDS: peptide mapping and obtention of two haemopoietic peptides. Vercaigne-Marko D; Kosciarz E; Nedjar-Arroume N; Guillochon D Biotechnol Appl Biochem; 2000 Apr; 31(2):127-34. PubMed ID: 10744958 [TBL] [Abstract][Full Text] [Related]
12. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus. Prasad L; Leduc Y; Hayakawa K; Delbaere LT Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):256-9. PubMed ID: 14747701 [TBL] [Abstract][Full Text] [Related]
13. Engineering of substrate mimetics as novel-type substrates for glutamic acid-specific endopeptidases: design, synthesis, and application. Wehofsky N; Wissmann J; Alisch M; Bordusa F Biochim Biophys Acta; 2000 Jun; 1479(1-2):114-22. PubMed ID: 11004534 [TBL] [Abstract][Full Text] [Related]
14. Synthesising protease-stable isopeptides by proteases: an efficient biocatalytic approach on the basis of a new type of substrate mimetics. Wehofsky N; Alisch M; Bordusa F Chem Commun (Camb); 2001 Sep; (17):1602-3. PubMed ID: 12240402 [TBL] [Abstract][Full Text] [Related]
15. Programming of enzyme specificity by substrate mimetics: investigations on the Glu-specific V8 protease reveals a novel general principle of biocatalysis. Wehofsky N; Bordusa F FEBS Lett; 1999 Jan; 443(2):220-4. PubMed ID: 9989609 [TBL] [Abstract][Full Text] [Related]
16. In vitro proteolytic activity and active-site identification of the human cytomegalovirus protease. Stevens JT; Mapelli C; Tsao J; Hail M; O'Boyle D; Weinheimer SP; Diianni CL Eur J Biochem; 1994 Dec; 226(2):361-7. PubMed ID: 8001553 [TBL] [Abstract][Full Text] [Related]
17. A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding. Nienaber VL; Breddam K; Birktoft JJ Biochemistry; 1993 Nov; 32(43):11469-75. PubMed ID: 8105890 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln. Dubin G; Stec-Niemczyk J; Kisielewska M; Pustelny K; Popowicz GM; Bista M; Kantyka T; Boulware KT; Stennicke HR; Czarna A; Phopaisarn M; Daugherty PS; Thøgersen IB; Enghild JJ; Thornberry N; Dubin A; Potempa J J Mol Biol; 2008 May; 379(2):343-56. PubMed ID: 18448121 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the substrate specificity of glutamyl endopeptidase using purified bovine β-casein and synthetic peptides. Kalyankar P; Zhu Y; O'Cuinn G; FitzGerald RJ J Agric Food Chem; 2013 Apr; 61(13):3193-204. PubMed ID: 23473379 [TBL] [Abstract][Full Text] [Related]
20. Identification of carboxyl residues in pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. 101 that participate in catalysis and substrate binding. Ito M; Narutaki S; Uchida K; Oda K J Biochem; 1999 Jan; 125(1):210-6. PubMed ID: 9880819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]