These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 16845551)

  • 1. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations.
    Toigo M; Boutellier U
    Eur J Appl Physiol; 2006 Aug; 97(6):643-63. PubMed ID: 16845551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular bases of training adaptation.
    Coffey VG; Hawley JA
    Sports Med; 2007; 37(9):737-63. PubMed ID: 17722947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural rearrangements in contractile apparatus and resulting skeletal muscle remodelling: effect of exercise training.
    Seene T; Kaasik P; Umnova M
    J Sports Med Phys Fitness; 2009 Dec; 49(4):410-23. PubMed ID: 20087301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training.
    Roberts LA; Raastad T; Markworth JF; Figueiredo VC; Egner IM; Shield A; Cameron-Smith D; Coombes JS; Peake JM
    J Physiol; 2015 Sep; 593(18):4285-301. PubMed ID: 26174323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscular adaptations to resistance exercise in the elderly.
    Narici MV; Reeves ND; Morse CI; Maganaris CN
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):161-4. PubMed ID: 15615118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using smartphone accelerometer data to obtain scientific mechanical-biological descriptors of resistance exercise training.
    Viecelli C; Graf D; Aguayo D; Hafen E; Füchslin RM
    PLoS One; 2020; 15(7):e0235156. PubMed ID: 32667945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones.
    Campos GE; Luecke TJ; Wendeln HK; Toma K; Hagerman FC; Murray TF; Ragg KE; Ratamess NA; Kraemer WJ; Staron RS
    Eur J Appl Physiol; 2002 Nov; 88(1-2):50-60. PubMed ID: 12436270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of exercise training and distribution of protein intake on molecular processes regulating skeletal muscle plasticity.
    Margolis LM; Rivas DA
    Calcif Tissue Int; 2015 Mar; 96(3):211-21. PubMed ID: 25348078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of skeletal muscle plasticity--from gene to form and function.
    Flück M; Hoppeler H
    Rev Physiol Biochem Pharmacol; 2003; 146():159-216. PubMed ID: 12605307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling.
    Neubauer O; Sabapathy S; Ashton KJ; Desbrow B; Peake JM; Lazarus R; Wessner B; Cameron-Smith D; Wagner KH; Haseler LJ; Bulmer AC
    J Appl Physiol (1985); 2014 Feb; 116(3):274-87. PubMed ID: 24311745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals.
    Brandenburg JP; Docherty D
    J Strength Cond Res; 2002 Feb; 16(1):25-32. PubMed ID: 11834103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early and late rate of force development: differential adaptive responses to resistance training?
    Andersen LL; Andersen JL; Zebis MK; Aagaard P
    Scand J Med Sci Sports; 2010 Feb; 20(1):e162-9. PubMed ID: 19793220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algorithmic extraction of smartphone accelerometer-derived mechano-biological descriptors of resistance exercise is robust to changes in intensity and velocity.
    Viecelli C; Aguayo D; Dällenbach S; Graf D; Achermann B; Hafen E; Füchslin RM
    PLoS One; 2021; 16(7):e0254164. PubMed ID: 34283863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise.
    Jackson MJ
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2285-91. PubMed ID: 16321798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutritional modulation of training-induced skeletal muscle adaptations.
    Hawley JA; Burke LM; Phillips SM; Spriet LL
    J Appl Physiol (1985); 2011 Mar; 110(3):834-45. PubMed ID: 21030665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of different resistance exercise loading schemes on mechanical power output in work to rest ratio - equated and - nonequated conditions.
    Paulo CA; Roschel H; Ugrinowitsch C; Kobal R; Tricoli V
    J Strength Cond Res; 2012 May; 26(5):1308-12. PubMed ID: 22516905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise.
    Philp A; Hargreaves M; Baar K
    Am J Physiol Endocrinol Metab; 2012 Jun; 302(11):E1343-51. PubMed ID: 22395109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli.
    Flück M
    J Exp Biol; 2006 Jun; 209(Pt 12):2239-48. PubMed ID: 16731801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and cellular adaptation of muscle in response to physical training.
    Booth FW; Tseng BS; Flück M; Carson JA
    Acta Physiol Scand; 1998 Mar; 162(3):343-50. PubMed ID: 9578380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.