BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 16846095)

  • 21. Na-dependent regulation of intracellular free magnesium concentration in isolated rat ventricular myocytes.
    Handy RD; Gow IF; Ellis D; Flatman PW
    J Mol Cell Cardiol; 1996 Aug; 28(8):1641-51. PubMed ID: 8877774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Na(+)-independent Mg2+ efflux from erythrocytes.
    Günther T; Vormann J
    FEBS Lett; 1990 Oct; 271(1-2):149-51. PubMed ID: 2171998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Mg2+ efflux from human, rat and chicken erythrocytes.
    Günther T; Vormann J
    FEBS Lett; 1989 Jul; 250(2):633-7. PubMed ID: 2753156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation by extracellular Na+ of cytosolic Mg2+ concentration in Mg(2+)-loaded rat sublingual acini.
    Zhang GH; Melvin JE
    FEBS Lett; 1995 Aug; 371(1):52-6. PubMed ID: 7664884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Na(+)-dependent Mg2+ efflux from Mg(2+)-loaded rat thymocytes and HL 60 cells.
    Günther T; Vormann J
    Magnes Trace Elem; 1990; 9(5):279-82. PubMed ID: 2130826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnesium transport in magnesium-loaded ferret red blood cells.
    Flatman PW; Smith LM
    Pflugers Arch; 1996 Oct; 432(6):995-1002. PubMed ID: 8781193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnesium metabolism in erythrocytes of patients with chronic renal failure and after renal transplantation.
    Vormann J; Günther T; Perras B; Rob PM
    Eur J Clin Chem Clin Biochem; 1994 Dec; 32(12):901-4. PubMed ID: 7696437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abnormal regulation of Mg2+ transport via Na/Mg exchanger in sickle erythrocytes.
    Rivera A; Ferreira A; Bertoni D; Romero JR; Brugnara C
    Blood; 2005 Jan; 105(1):382-6. PubMed ID: 15353477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of Na+/Mg2+ antiport in thymocytes by cAMP.
    Günther T; Vormann J
    FEBS Lett; 1992 Feb; 297(1-2):132-4. PubMed ID: 1312946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of mefloquine and quinine on the relaxation times of water protons in human erythrocytes, as revealed by NMR.
    Nishina M; Matsushita K; Kato K
    Physiol Chem Phys Med NMR; 1996; 28(1):35-9. PubMed ID: 8875805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron and magnesium exchange via the low affinity iron transporter in rabbit erythroid cells-exchange rates and the action of valinomycin, diethylstilbestrol and protein kinase inhibitors.
    Savigni DL; Morgan EH
    Biochim Biophys Acta; 2003 Oct; 1616(2):156-64. PubMed ID: 14561473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes.
    Féray JC; Garay R
    J Biol Chem; 1987 Apr; 262(12):5763-8. PubMed ID: 3571233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular Ca(2+)-Mg2+ interactions.
    Günther T; Vormann J
    Ren Physiol Biochem; 1994; 17(6):279-86. PubMed ID: 7533306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induction of Mn2+/H+ antiport in chicken erythrocytes by intracellular Mg2+ and Mn2+.
    Günther T; Vormann J
    FEBS Lett; 1990 Jun; 265(1-2):55-8. PubMed ID: 2365055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The antimalarial potential of 4-quinolinecarbinolamines may be limited due to neurotoxicity and cross-resistance in mefloquine-resistant Plasmodium falciparum strains.
    Dow GS; Koenig ML; Wolf L; Gerena L; Lopez-Sanchez M; Hudson TH; Bhattacharjee AK
    Antimicrob Agents Chemother; 2004 Jul; 48(7):2624-32. PubMed ID: 15215119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of insulin and insulin-like growth factor-1 on intracellular magnesium of platelets.
    Takaya J; Higashino H; Miyazaki R; Kobayashi Y
    Exp Mol Pathol; 1998 Oct; 65(2):104-9. PubMed ID: 9828151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mefloquine induces oxidative stress and neurodegeneration in primary rat cortical neurons.
    Hood JE; Jenkins JW; Milatovic D; Rongzhu L; Aschner M
    Neurotoxicology; 2010 Sep; 31(5):518-23. PubMed ID: 20562019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insulin modulation of Na/H antiport in rat red blood cells.
    Rizvi SI; Incerpi S; Luly P
    Indian J Biochem Biophys; 1994 Apr; 31(2):127-30. PubMed ID: 7927433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute effect of EtOH on Mg2+ homeostasis in liver cells: evidence for the activation of an Na+/Mg2+ exchanger.
    Tessman PA; Romani A
    Am J Physiol; 1998 Nov; 275(5):G1106-16. PubMed ID: 9815041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loading rat heart myocytes with Mg2+ using low-[Na+] solutions.
    Almulla HA; Bush PG; Steele MG; Ellis D; Flatman PW
    J Physiol; 2006 Sep; 575(Pt 2):443-54. PubMed ID: 16793904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.