These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16846149)

  • 1. Bleustein-Gulyaev-Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals.
    Hsu JC; Wu TT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jun; 53(6):1169-76. PubMed ID: 16846149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incredible negative values of effective electromechanical coupling coefficient for surface acoustic waves in piezoelectrics.
    Mozhaev VG; Weihnacht M
    Ultrasonics; 2000 Jul; 37(10):687-91. PubMed ID: 10950352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigation of surface acoustic wave in the new, three-layered structure: ZnO/AlN/diamond.
    El Hakiki M; Elmazria O; Alnot P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):676-81. PubMed ID: 17375837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of material parameters on acoustic wave propagation modes in ZnO/Si bi-layered structures.
    Gao HD; Zhang SY; Qi X; Wasa K; Wu HD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2361-9. PubMed ID: 16463503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear horizontal BG surface acoustic waves on piezoelectrics: a historical note.
    Hickernell FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 May; 52(5):809-11. PubMed ID: 16048181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface acoustic waves in one-dimensional piezoelectric-metallic phononic crystal: Effect of a cap layer.
    Alami M; El Boudouti EH; Djafari-Rouhani B; El Hassouani Y; Talbi A
    Ultrasonics; 2018 Nov; 90():80-97. PubMed ID: 29940395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant generation of surface acoustic waves between moving and stationary piezoelectric crystals.
    Khudik VN; Theodosiou CE
    J Acoust Soc Am; 2007 Dec; 122(6):3405-8. PubMed ID: 18247749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of Bleustein-Gulyaev waves in a prestressed layered piezoelectric structure.
    Liu H; Kuang ZB; Cai ZM
    Ultrasonics; 2003 Jul; 41(5):397-405. PubMed ID: 12788222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The peculiarities of the Bleustein-Gulyaev wave propagation in structures containing conductive layer.
    Kuznetsova IЕ; Zaitsev BD
    Ultrasonics; 2015 May; 59():45-9. PubMed ID: 25670410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full band gap for surface acoustic waves in a piezoelectric phononic crystal.
    Laude V; Wilm M; Benchabane S; Khelif A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036607. PubMed ID: 15903605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of MgxZn1-xO thin film bulk acoustic wave devices.
    Wittstruck RH; Tong X; Emanetoglu NW; Wu P; Chen Y; Zhu J; Muthukumar S; Lu Y; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1272-8. PubMed ID: 14609066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of ZnO@CdS core-shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap.
    Habibi MH; Rahmati MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():13-8. PubMed ID: 24926644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G
    Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High frequency SAW devices based on third harmonic generation.
    Le Brizoual L; Elmazria O; Sarry F; El Hakiki M; Talbi A; Alnot P
    Ultrasonics; 2006 Dec; 45(1-4):100-3. PubMed ID: 17055019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature synthesis of ZnO/CdS hierarchical nanostructure for photovoltaic application.
    Chen XY; Ling T; Du XW
    Nanoscale; 2012 Sep; 4(18):5602-7. PubMed ID: 22743779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave packet transmission in a ZnO nanorod under the influence of repulsive/attractive scattering center.
    Fu Y; Hu QH; Willander M
    J Nanosci Nanotechnol; 2004; 4(1-2):91-3. PubMed ID: 15112548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of luminescence from ZnO/CdS core/shell nanowire arrays.
    Wang Z; Wang J; Sham TK; Yang S
    Nanoscale; 2014 Aug; 6(16):9783-90. PubMed ID: 25008783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of a CdO layer on CdS/ZnO nanorod arrays to enhance their photoelectrochemical performance.
    Van TK; Pham LQ; Kim DY; Zheng JY; Kim D; Pawar AU; Kang YS
    ChemSusChem; 2014 Dec; 7(12):3505-12. PubMed ID: 25324138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAW parameters on Y-cut langasite structured materials.
    Puccio D; Malocha DC; Saldanha N; da Cunha MP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1873-81. PubMed ID: 17941393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire.
    Zhang F; Ding Y; Zhang Y; Zhang X; Wang ZL
    ACS Nano; 2012 Oct; 6(10):9229-36. PubMed ID: 23020237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.