These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
813 related articles for article (PubMed ID: 16846208)
1. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Kneipp K; Kneipp H; Kneipp J Acc Chem Res; 2006 Jul; 39(7):443-50. PubMed ID: 16846208 [TBL] [Abstract][Full Text] [Related]
2. SERS--a single-molecule and nanoscale tool for bioanalytics. Kneipp J; Kneipp H; Kneipp K Chem Soc Rev; 2008 May; 37(5):1052-60. PubMed ID: 18443689 [TBL] [Abstract][Full Text] [Related]
3. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Kneipp J; Kneipp H; Rice WL; Kneipp K Anal Chem; 2005 Apr; 77(8):2381-5. PubMed ID: 15828770 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates. Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086 [TBL] [Abstract][Full Text] [Related]
5. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles. Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254 [TBL] [Abstract][Full Text] [Related]
6. SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters. Kneipp K; Kneipp H Faraday Discuss; 2006; 132():27-33; discussion 85-94. PubMed ID: 16833105 [TBL] [Abstract][Full Text] [Related]
7. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides. Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724 [TBL] [Abstract][Full Text] [Related]
8. Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. Wang Z; Bonoiu A; Samoc M; Cui Y; Prasad PN Biosens Bioelectron; 2008 Jan; 23(6):886-91. PubMed ID: 17996441 [TBL] [Abstract][Full Text] [Related]
9. Surface-enhanced Raman optical activity on adenine in silver colloidal solution. Kneipp H; Kneipp J; Kneipp K Anal Chem; 2006 Feb; 78(4):1363-6. PubMed ID: 16478135 [TBL] [Abstract][Full Text] [Related]
10. Studies of surface-enhanced Raman scattering of C60 Langmuir-Blodgett film on a new substrate. Xu G; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):104-8. PubMed ID: 17889595 [TBL] [Abstract][Full Text] [Related]
12. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Orendorff CJ; Gearheart L; Jana NR; Murphy CJ Phys Chem Chem Phys; 2006 Jan; 8(1):165-70. PubMed ID: 16482257 [TBL] [Abstract][Full Text] [Related]
13. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Gunawidjaja R; Kharlampieva E; Choi I; Tsukruk VV Small; 2009 Nov; 5(21):2460-6. PubMed ID: 19642091 [TBL] [Abstract][Full Text] [Related]
14. Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering. Panigrahi S; Praharaj S; Basu S; Ghosh SK; Jana S; Pande S; Vo-Dinh T; Jiang H; Pal T J Phys Chem B; 2006 Jul; 110(27):13436-44. PubMed ID: 16821868 [TBL] [Abstract][Full Text] [Related]
15. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode. Wen R; Fang Y J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260 [TBL] [Abstract][Full Text] [Related]
16. Surface-enhanced Raman scattering of single-walled carbon nanotubes on modified silver electrode. Hou X; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1140-5. PubMed ID: 17686652 [TBL] [Abstract][Full Text] [Related]
17. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing. Kneipp J; Li X; Sherwood M; Panne U; Kneipp H; Stockman MI; Kneipp K Anal Chem; 2008 Jun; 80(11):4247-51. PubMed ID: 18439029 [TBL] [Abstract][Full Text] [Related]
18. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. Kim K; Lee HS J Phys Chem B; 2005 Oct; 109(40):18929-34. PubMed ID: 16853437 [TBL] [Abstract][Full Text] [Related]
19. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
20. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]