These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 16846227)
1. Initial transcribed sequence mutations specifically affect promoter escape properties. Hsu LM; Cobb IM; Ozmore JR; Khoo M; Nahm G; Xia L; Bao Y; Ahn C Biochemistry; 2006 Jul; 45(29):8841-54. PubMed ID: 16846227 [TBL] [Abstract][Full Text] [Related]
2. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters. Hsu LM; Vo NV; Kane CM; Chamberlin MJ Biochemistry; 2003 Apr; 42(13):3777-86. PubMed ID: 12667069 [TBL] [Abstract][Full Text] [Related]
3. An alternate mechanism of abortive release marked by the formation of very long abortive transcripts. Chander M; Austin KM; Aye-Han NN; Sircar P; Hsu LM Biochemistry; 2007 Nov; 46(44):12687-99. PubMed ID: 17929835 [TBL] [Abstract][Full Text] [Related]
4. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 3. Influences of individual DNA elements within the promoter recognition region on abortive initiation and promoter escape. Vo NV; Hsu LM; Kane CM; Chamberlin MJ Biochemistry; 2003 Apr; 42(13):3798-811. PubMed ID: 12667071 [TBL] [Abstract][Full Text] [Related]
5. Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro. Hsu LM; Vo NV; Chamberlin MJ Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11588-92. PubMed ID: 8524809 [TBL] [Abstract][Full Text] [Related]
6. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 2. Formation and characterization of two distinct classes of initial transcribing complexes. Vo NV; Hsu LM; Kane CM; Chamberlin MJ Biochemistry; 2003 Apr; 42(13):3787-97. PubMed ID: 12667070 [TBL] [Abstract][Full Text] [Related]
7. Sequence-Dependent Promoter Escape Efficiency Is Strongly Influenced by Bias for the Pretranslocated State during Initial Transcription. Skancke J; Bar N; Kuiper M; Hsu LM Biochemistry; 2015 Jul; 54(28):4267-75. PubMed ID: 26083830 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of transcription initiation and promoter escape by Henderson KL; Felth LC; Molzahn CM; Shkel I; Wang S; Chhabra M; Ruff EF; Bieter L; Kraft JE; Record MT Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3032-E3040. PubMed ID: 28348246 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of Very Long Abortive Transcript Release during Promoter Escape. Chander M; Lee A; Vallery TK; Thandar M; Jiang Y; Hsu LM Biochemistry; 2015 Dec; 54(50):7393-408. PubMed ID: 26610896 [TBL] [Abstract][Full Text] [Related]
10. Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Margeat E; Kapanidis AN; Tinnefeld P; Wang Y; Mukhopadhyay J; Ebright RH; Weiss S Biophys J; 2006 Feb; 90(4):1419-31. PubMed ID: 16299085 [TBL] [Abstract][Full Text] [Related]
11. Changes in conserved region 3 of Escherichia coli sigma 70 reduce abortive transcription and enhance promoter escape. Cashel M; Hsu LM; Hernandez VJ J Biol Chem; 2003 Feb; 278(8):5539-47. PubMed ID: 12477716 [TBL] [Abstract][Full Text] [Related]
13. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products. Jin DJ; Turnbough CL J Mol Biol; 1994 Feb; 236(1):72-80. PubMed ID: 7508986 [TBL] [Abstract][Full Text] [Related]
14. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Revyakin A; Liu C; Ebright RH; Strick TR Science; 2006 Nov; 314(5802):1139-43. PubMed ID: 17110577 [TBL] [Abstract][Full Text] [Related]
15. Relaxed rotational and scrunching changes in P266L mutant of T7 RNA polymerase reduce short abortive RNAs while delaying transition into elongation. Tang GQ; Nandakumar D; Bandwar RP; Lee KS; Roy R; Ha T; Patel SS PLoS One; 2014; 9(3):e91859. PubMed ID: 24651161 [TBL] [Abstract][Full Text] [Related]
16. Abortive initiation by bacteriophage T3 and T7 RNA polymerases under conditions of limiting substrate. Ling ML; Risman SS; Klement JF; McGraw N; McAllister WT Nucleic Acids Res; 1989 Feb; 17(4):1605-18. PubMed ID: 2646596 [TBL] [Abstract][Full Text] [Related]
17. Conserved region 3 of Escherichia coli final sigma70 is implicated in the process of abortive transcription. Hernandez VJ; Hsu LM; Cashel M J Biol Chem; 1996 Aug; 271(31):18775-9. PubMed ID: 8702534 [TBL] [Abstract][Full Text] [Related]
18. The low processivity of T7 RNA polymerase over the initially transcribed sequence can limit productive initiation in vivo. Lopez PJ; Guillerez J; Sousa R; Dreyfus M J Mol Biol; 1997 May; 269(1):41-51. PubMed ID: 9192999 [TBL] [Abstract][Full Text] [Related]
19. Abortive initiation of transcription at a hybrid promoter. An analysis of the sliding clamp activator of bacteriophage T4 late transcription, and a comparison of the sigma70 and T4 gp55 promoter recognition proteins. Fu TJ; Geiduschek EP; Kassavetis GA J Biol Chem; 1998 Dec; 273(51):34042-8. PubMed ID: 9852060 [TBL] [Abstract][Full Text] [Related]
20. Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters. Winkelman JT; Chandrangsu P; Ross W; Gourse RL Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1787-95. PubMed ID: 26976590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]