BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16846243)

  • 1. An isothermal titration calorimetry study of the binding of substrates and ligands to the tartrate dehydrogenase from Pseudomonas putida reveals half-of-the-sites reactivity.
    Karsten WE; Cook PF
    Biochemistry; 2006 Jul; 45(29):9000-6. PubMed ID: 16846243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tartrate dehydrogenase catalyzes the stepwise oxidative decarboxylation of D-malate with both NAD and thio-NAD.
    Karsten WE; Tipton PA; Cook PF
    Biochemistry; 2002 Oct; 41(40):12193-9. PubMed ID: 12356321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tartrate dehydrogenase-oxalate complexes: formation of a stable analog of a reaction intermediate complex.
    Beecher BS; Koder RL; Tipton PA
    Arch Biochem Biophys; 1994 Dec; 315(2):255-61. PubMed ID: 7986065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the multiple catalytic activities of tartrate dehydrogenase.
    Tipton PA; Peisach J
    Biochemistry; 1990 Feb; 29(7):1749-56. PubMed ID: 2184888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cosubstrate-induced dynamics of D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida.
    Paithankar KS; Feller C; Kuettner EB; Keim A; Grunow M; Sträter N
    FEBS J; 2007 Nov; 274(21):5767-79. PubMed ID: 17958702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed EPR analysis of tartrate dehydrogenase active-site complexes.
    Tipton PA; Peisach J
    Biochemistry; 1991 Jan; 30(3):739-44. PubMed ID: 1846305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tartrate dehydrogenase, a new member of the family of metal-dependent decarboxylating R-hydroxyacid dehydrogenases.
    Tipton PA; Beecher BS
    Arch Biochem Biophys; 1994 Aug; 313(1):15-21. PubMed ID: 8053675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites.
    Karsten WE; Pais JE; Rao GS; Harris BG; Cook PF
    Biochemistry; 2003 Aug; 42(32):9712-21. PubMed ID: 12911313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enoyl-ACP reductase (FabI) of Haemophilus influenzae: steady-state kinetic mechanism and inhibition by triclosan and hexachlorophene.
    Marcinkeviciene J; Jiang W; Kopcho LM; Locke G; Luo Y; Copeland RA
    Arch Biochem Biophys; 2001 Jun; 390(1):101-8. PubMed ID: 11368521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct transfer of NADH from malate dehydrogenase to complex I in Escherichia coli.
    Amarneh B; Vik SB
    Cell Biochem Biophys; 2005; 42(3):251-61. PubMed ID: 15976458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of bromosulphophthalein binding to human glutathione S-transferase A1-1: thermodynamics and inhibition kinetics.
    Kolobe D; Sayed Y; Dirr HW
    Biochem J; 2004 Sep; 382(Pt 2):703-9. PubMed ID: 15147239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction.
    Aktas DF; Cook PF
    Biochemistry; 2008 Feb; 47(8):2539-46. PubMed ID: 18215074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of aminoglycoside binding to aminoglycoside-3'-phosphotransferase IIIa studied by isothermal titration calorimetry.
    Ozen C; Serpersu EH
    Biochemistry; 2004 Nov; 43(46):14667-75. PubMed ID: 15544337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Half-of-sites binding of orotidine 5'-phosphate and alpha-D-5-phosphorylribose 1-diphosphate to orotate phosphoribosyltransferase from Saccharomyces cerevisiae supports a novel variant of the Theorell-Chance mechanism with alternating site catalysis.
    McClard RW; Holets EA; MacKinnon AL; Witte JF
    Biochemistry; 2006 Apr; 45(16):5330-42. PubMed ID: 16618122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions.
    Malik R; Viola RE
    Acta Crystallogr D Biol Crystallogr; 2010 Jun; 66(Pt 6):673-84. PubMed ID: 20516620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stereospecificity of sequential nicotinamide-adenine dinucleotide-dependent oxidoreductases in relation to the evolution of metabolic sequences.
    do Nascimento KH; Davies DD
    Biochem J; 1975 Sep; 149(3):553-7. PubMed ID: 1200995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition and pH dependence of phosphite dehydrogenase.
    Relyea HA; Vrtis JM; Woodyer R; Rimkus SA; van der Donk WA
    Biochemistry; 2005 May; 44(17):6640-9. PubMed ID: 15850397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal ion binding and enzymatic mechanism of Methanococcus jannaschii RNase HII.
    Lai B; Li Y; Cao A; Lai L
    Biochemistry; 2003 Jan; 42(3):785-91. PubMed ID: 12534291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of a new NAD(+)-dependent enzyme, L-tartrate decarboxylase, from Pseudomonas sp. group Ve-2.
    Furuyoshi S; Nawa Y; Kawabata N; Tanaka H; Soda K
    J Biochem; 1991 Oct; 110(4):520-5. PubMed ID: 1778975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.