BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16846641)

  • 1. Finalizing the properties of porous scaffolds of aliphatic polyesters through radiation sterilization.
    Plikk P; Odelius K; Hakkarainen M; Albertsson AC
    Biomaterials; 2006 Nov; 27(31):5335-47. PubMed ID: 16846641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization.
    Odelius K; Plikk P; Albertsson AC
    Biomaterials; 2008 Jan; 29(2):129-40. PubMed ID: 17936898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization.
    Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC
    Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous scaffolds from high molecular weight polyesters synthesized via enzyme-catalyzed ring-opening polymerization.
    Srivastava RK; Albertsson AC
    Biomacromolecules; 2006 Sep; 7(9):2531-8. PubMed ID: 16961314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration.
    Plikk P; Målberg S; Albertsson AC
    Biomacromolecules; 2009 May; 10(5):1259-64. PubMed ID: 19331401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of gamma irradiation on thermoplastic copolyesters.
    Moskala EJ
    Med Device Technol; 2003 Apr; 14(3):12-6. PubMed ID: 12789693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester.
    Odelius K; Plikk P; Albertsson AC
    Biomacromolecules; 2005; 6(5):2718-25. PubMed ID: 16153111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone).
    Bramfeldt H; Sarazin P; Vermette P
    J Biomed Mater Res A; 2007 Nov; 83(2):503-11. PubMed ID: 17503493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradable porous scaffolds from various L-lactide and trimethylene carbonate copolymers obtained by a simple and effective method.
    Tyson T; Finne-Wistrand A; Albertsson AC
    Biomacromolecules; 2009 Jan; 10(1):149-54. PubMed ID: 19063595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sterilisation by gamma irradiation on the ability of polycaprolactone (PCL) to act as a scaffold material.
    Cottam E; Hukins DW; Lee K; Hewitt C; Jenkins MJ
    Med Eng Phys; 2009 Mar; 31(2):221-6. PubMed ID: 18760952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of radiation processing and filler morphology on the biomechanical stability of a thermoset polyester composite.
    Jayabalan M; Shalumon KT; Mitha MK; Ganesan K; Epple M
    Biomed Mater; 2010 Apr; 5(2):25009. PubMed ID: 20339170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide).
    Zhang J; Wang LQ; Wang H; Tu K
    Biomacromolecules; 2006 Sep; 7(9):2492-500. PubMed ID: 16961309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(epsilon-caprolactone) biomaterial sterilized by E-beam irradiation.
    Filipczak K; Wozniak M; Ulanski P; Olah L; Przybytniak G; Olkowski RM; Lewandowska-Szumiel M; Rosiak JM
    Macromol Biosci; 2006 Apr; 6(4):261-73. PubMed ID: 16586438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering.
    Chang KY; Cheng LW; Ho GH; Huang YP; Lee YD
    Acta Biomater; 2009 Jul; 5(6):1937-47. PubMed ID: 19282262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications.
    Tiaw KS; Goh SW; Hong M; Wang Z; Lan B; Teoh SH
    Biomaterials; 2005 Mar; 26(7):763-9. PubMed ID: 15350781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate.
    Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW
    Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the lithium and magnesium initiators for the synthesis of glycolide, lactide, and epsilon-caprolactone copolymers biocompatible with brain tissue.
    Dobrzyński P; Kasperczyk J; Jelonek K; Ryba M; Walski M; Bero M
    J Biomed Mater Res A; 2006 Dec; 79(4):865-73. PubMed ID: 16886217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sterilization on the physical and structural characteristics of polyhydroxyoctanoate (PHO).
    Marois Y; Zhang Z; Vert M; Deng X; Lenz R; Guidoin R
    J Biomater Sci Polym Ed; 1999; 10(4):469-82. PubMed ID: 10227468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term effect of gamma irradiation on the functional properties and cytocompatibility of multiblock co-polymer films.
    Dorati R; Colonna C; Tomasi C; Bruni G; Genta I; Modena T; Conti B
    J Biomater Sci Polym Ed; 2012; 23(17):2223-40. PubMed ID: 22152647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline and enzymatic degradation of L-lactide copolymers, 1. Amorphous-made films of L-lactide copolymers with D-lactide, glycolide, and epsilon-caprolactone.
    Tsuji H; Tezuka Y
    Macromol Biosci; 2005 Feb; 5(2):135-48. PubMed ID: 15729721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.