These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16847610)

  • 1. Visual-vestibular interaction during goal directed locomotion: effects of aging and blurring vision.
    Deshpande N; Patla AE
    Exp Brain Res; 2007 Jan; 176(1):43-53. PubMed ID: 16847610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic visual-vestibular integration during goal directed human locomotion.
    Deshpande N; Patla AE
    Exp Brain Res; 2005 Oct; 166(2):237-47. PubMed ID: 16032405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions.
    Novak AC; Deshpande N
    Hum Mov Sci; 2014 Jun; 35():121-30. PubMed ID: 24746603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postural responses and spatial orientation to neck proprioceptive and vestibular inputs during locomotion in young and older adults.
    Deshpande N; Patla AE
    Exp Brain Res; 2005 Dec; 167(3):468-74. PubMed ID: 16283400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of intermittent galvanic vestibular stimulation reveals age-related constraints in the multisensory reweighting of posture.
    Eikema DJ; Hatzitaki V; Tzovaras D; Papaxanthis C
    Neurosci Lett; 2014 Feb; 561():112-7. PubMed ID: 24388842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying visual-vestibular contributions during target-directed locomotion.
    Carlsen AN; Kennedy PM; Anderson KG; Cressman EK; Nagelkerke P; Chua R
    Neurosci Lett; 2005 Aug; 384(3):217-21. PubMed ID: 15893425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual-Vestibular Interaction for Postural Control During Sit-to-Stand: Effects of Aging.
    Lui KY; Hewston P; Deshpande N
    Motor Control; 2019 Jan; 23(1):115-126. PubMed ID: 30008245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision can recalibrate the vestibular reafference signal used to re-establish postural equilibrium following a platform perturbation.
    Toth AJ; Harris LR; Zettel J; Bent LR
    Exp Brain Res; 2017 Feb; 235(2):407-414. PubMed ID: 27752729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Vestibular influences on human locomotion: results obtained using galvanic vestibular stimulation].
    Stolbkov IuK; Gerasimenko IuP
    Ross Fiziol Zh Im I M Sechenova; 2014 Jun; 100(6):684-98. PubMed ID: 25665394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual-vestibular influences on locomotor adjustments for stepping over an obstacle.
    McFadyen BJ; Bouyer L; Bent LR; Inglis JT
    Exp Brain Res; 2007 May; 179(2):235-43. PubMed ID: 17136529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-associated differences in global and segmental control during dual-task walking under sub-optimal sensory conditions.
    Deshpande N; Hewston P; Yoshikawa M
    Hum Mov Sci; 2015 Apr; 40():211-9. PubMed ID: 25617991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory Interactions for Head and Trunk Control in Space in Young and Older Adults During Normal and Narrow-Base Walking.
    Zhang F; Deshpande N
    Motor Control; 2016 Jan; 20(1):21-32. PubMed ID: 25675141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual feedback is not necessary for recalibrating the vestibular contribution to the dynamic phase of a perturbation recovery response.
    Toth AJ; Harris LR; Bent LR
    Exp Brain Res; 2019 Sep; 237(9):2185-2196. PubMed ID: 31214739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual-vestibular interactions in postural control during the execution of a dynamic task.
    Bent LR; McFadyen BJ; Inglis JT
    Exp Brain Res; 2002 Oct; 146(4):490-500. PubMed ID: 12355278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When is vestibular information important during walking?
    Bent LR; Inglis JT; McFadyen BJ
    J Neurophysiol; 2004 Sep; 92(3):1269-75. PubMed ID: 15102904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise-Enhanced Vestibular Input Improves Dynamic Walking Stability in Healthy Subjects.
    Wuehr M; Nusser E; Krafczyk S; Straube A; Brandt T; Jahn K; Schniepp R
    Brain Stimul; 2016; 9(1):109-16. PubMed ID: 26422129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contributions of visual and vestibular information on the trajectory of human gait.
    Kennedy PM; Carlsen AN; Inglis JT; Chow R; Franks IM; Chua R
    Exp Brain Res; 2003 Nov; 153(1):113-7. PubMed ID: 12961058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expectation and the vestibular control of balance.
    Guerraz M; Day BL
    J Cogn Neurosci; 2005 Mar; 17(3):463-9. PubMed ID: 15814005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of touch feedback with muscle vibration and galvanic vestibular stimulation in the control of trunk posture.
    Maaswinkel E; Veeger HE; Dieen JH
    Gait Posture; 2014 Feb; 39(2):745-9. PubMed ID: 24192277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the use of vestibular information weighted differently across the initiation of walking?
    Bent LR; McFadyen BJ; Inglis JT
    Exp Brain Res; 2004 Aug; 157(4):407-16. PubMed ID: 14991215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.