These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16847666)

  • 21. Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus.
    Pressnitzer D; Meddis R; Delahaye R; Winter IM
    J Neurosci; 2001 Aug; 21(16):6377-86. PubMed ID: 11487661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model of perceptual segregation based on clustering the time series of the simulated auditory nerve firing probability.
    Balaguer-Ballester E; Coath M; Denham SL
    Biol Cybern; 2007 Dec; 97(5-6):479-91. PubMed ID: 17994247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A physiological and structural study of neuron types in the cochlear nucleus. I. Intracellular responses to acoustic stimulation and current injection.
    Feng JJ; Kuwada S; Ostapoff EM; Batra R; Morest DK
    J Comp Neurol; 1994 Aug; 346(1):1-18. PubMed ID: 7962705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The temporal representation of the delay of dynamic iterated rippled noise with positive and negative gain by single units in the ventral cochlear nucleus.
    Sayles M; Winter IM
    Brain Res; 2007 Sep; 1171():52-66. PubMed ID: 17803979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neurophysiol; 2008 Jan; 99(1):1-13. PubMed ID: 17928560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuronal organization of the rabbit cochlear nucleus: some anatomical and electrophysiological observations.
    Perry DR; Webster WR
    J Comp Neurol; 1981 Apr; 197(4):623-38. PubMed ID: 7229131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity influences on neuronal connectivity within the auditory pathway.
    Niparko JK
    Laryngoscope; 1999 Nov; 109(11):1721-30. PubMed ID: 10569397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Response properties of cochlear nucleus neurons: a digital model-based study].
    Xu YJ; Zhou LH; Xiao ZJ
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Jan; 31(1):77-81. PubMed ID: 21269962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Responses of ventral cochlear nucleus neurons to contralateral sound after conductive hearing loss.
    Sumner CJ; Tucci DL; Shore SE
    J Neurophysiol; 2005 Dec; 94(6):4234-43. PubMed ID: 16093339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks.
    Meyer K; Rouiller EM; Loquet G
    Hear Res; 2007 Jun; 228(1-2):144-55. PubMed ID: 17391881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation.
    Young ED; Sachs MB
    Neuroscience; 2008 Jun; 154(1):127-38. PubMed ID: 18343587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic stria: anatomy of physiologically characterized cells and their axonal projection patterns.
    Smith PH; Massie A; Joris PX
    J Comp Neurol; 2005 Feb; 482(4):349-71. PubMed ID: 15669051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The commissural pathway and cochlear nucleus bushy neurons: an in vivo intracellular investigation.
    Needham K; Paolini AG
    Brain Res; 2007 Feb; 1134(1):113-21. PubMed ID: 17174943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus.
    Wiegrebe L; Meddis R
    J Acoust Soc Am; 2004 Mar; 115(3):1207-18. PubMed ID: 15058342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tonotopic control of auditory thalamus frequency tuning by reticular thalamic neurons.
    Cotillon-Williams N; Huetz C; Hennevin E; Edeline JM
    J Neurophysiol; 2008 Mar; 99(3):1137-51. PubMed ID: 18160422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural correlations increase between consecutive processing levels in the auditory system of locusts.
    Vogel A; Ronacher B
    J Neurophysiol; 2007 May; 97(5):3376-85. PubMed ID: 17360818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning bat LSO neurons to interaural intensity differences through spike-timing dependent plasticity.
    Fontaine B; Peremans H
    Biol Cybern; 2007 Oct; 97(4):261-7. PubMed ID: 17899163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.