BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16848444)

  • 1. Symbiotic reagent activation: Oppenauer oxidation of magnesium alkoxides by silylglyoxylates triggers second-stage aldolization.
    Linghu X; Satterfield AD; Johnson JS
    J Am Chem Soc; 2006 Jul; 128(29):9302-3. PubMed ID: 16848444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic redox-initiated glycolate aldol additions of silyl glyoxylates.
    Greszler SN; Johnson JS
    Org Lett; 2009 Feb; 11(4):827-30. PubMed ID: 19161319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Mg-oppenauer oxidation as a mild method for the synthesis of aryl and metallocenyl ketones.
    Kloetzing RJ; Krasovskiy A; Knochel P
    Chemistry; 2007; 13(1):215-27. PubMed ID: 17024705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncatalyzed Meerwein-Ponndorf-Oppenauer-Verley reduction of aldehydes and ketones under supercritical conditions.
    Sominsky L; Rozental E; Gottlieb H; Gedanken A; Hoz S
    J Org Chem; 2004 Mar; 69(5):1492-6. PubMed ID: 14987002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indium tri(isopropoxide)-catalyzed selective Meerwein-Ponndorf-Verley reduction of aliphatic and aromatic aldehydes.
    Lee J; Ryu T; Park S; Lee PH
    J Org Chem; 2012 May; 77(10):4821-5. PubMed ID: 22563904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric acid-catalyzed Meerwein-Ponndorf-Verley-Aldol reactions of enolizable aldehydes.
    Seifert A; Scheffler U; Markert M; Mahrwald R
    Org Lett; 2010 Apr; 12(8):1660-3. PubMed ID: 20302361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient, Catalytic Meerwein-Ponndorf-Verley Reduction with a Novel Bidentate Aluminum Catalyst.
    Ooi T; Miura T; Maruoka K
    Angew Chem Int Ed Engl; 1998 Sep; 37(17):2347-2349. PubMed ID: 29710956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of 2-Aryl benzothiazoles via K2S2O8-mediated oxidative condensation of benzothiazoles with aryl aldehydes.
    Yang Z; Chen X; Wang S; Liu J; Xie K; Wang A; Tan Z
    J Org Chem; 2012 Aug; 77(16):7086-91. PubMed ID: 22835066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meerwein-Ponndorf-Verley alkynylation of aldehydes: essential modification of aluminium alkoxides for rate acceleration and asymmetric synthesis.
    Ooi T; Miura T; Ohmatsu K; Saito A; Maruoka K
    Org Biomol Chem; 2004 Nov; 2(22):3312-9. PubMed ID: 15534709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium bromide as a flexible, mild, and recyclable reagent for solvent-free Cannizzaro, Tishchenko, and Meerwein-Ponndorf-Verley reactions.
    Mojtahedi MM; Akbarzadeh E; Sharifi R; Abaee MS
    Org Lett; 2007 Jul; 9(15):2791-3. PubMed ID: 17580879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allylic and allenic halide synthesis via NbCl(5)- and NbBr(5)-mediated alkoxide rearrangements.
    Ravikumar PC; Yao L; Fleming FF
    J Org Chem; 2009 Oct; 74(19):7294-9. PubMed ID: 19739606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A well-defined monomeric aluminum complex as an efficient and general catalyst in the Meerwein-Ponndorf-Verley reduction.
    McNerney B; Whittlesey B; Cordes DB; Krempner C
    Chemistry; 2014 Nov; 20(46):14959-64. PubMed ID: 25284749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts.
    Boronat M; Corma A; Renz M
    J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ formation of allyl ketones via Hiyama-Nozaki reactions followed by a chromium-mediated Oppenauer oxidation.
    Schrekker HS; de Bolster MW; Orru RV; Wessjohann LA
    J Org Chem; 2002 Apr; 67(7):1975-81. PubMed ID: 11925200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric rearrangement of racemic epoxides catalyzed by chiral Brønsted acids.
    Zhuang M; Du H
    Org Biomol Chem; 2013 Mar; 11(9):1460-2. PubMed ID: 23361172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected β-Amino Aldehydes.
    Dong JJ; Harvey EC; Fañanás-Mastral M; Browne WR; Feringa BL
    J Am Chem Soc; 2014 Dec; 136(49):17302-7. PubMed ID: 25384246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandem nucleophilic addition-Oppenauer oxidation of aromatic aldehydes to aryl ketones with triorganoaluminium reagents.
    Fu Y; Yang Y; Hügel HM; Du Z; Wang K; Huang D; Hu Y
    Org Biomol Chem; 2013 Jul; 11(27):4429-32. PubMed ID: 23736650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of alcohols to carbonyl compounds with diisopropyl azodicarboxylate catalyzed by nitroxyl radicals.
    Hayashi M; Shibuya M; Iwabuchi Y
    J Org Chem; 2012 Mar; 77(6):3005-9. PubMed ID: 22352461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of chiral nonracemic amines.
    Roe C; Hobbs H; Stockman RA
    J Org Chem; 2011 Nov; 76(22):9452-9. PubMed ID: 21992680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic asymmetric Meerwein-Ponndorf-Verley reduction of glyoxylates induced by a chiral N,N'-dioxide/Y(OTf)
    Wu W; Zou S; Lin L; Ji J; Zhang Y; Ma B; Liu X; Feng X
    Chem Commun (Camb); 2017 Mar; 53(22):3232-3235. PubMed ID: 28256667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.