BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16848474)

  • 1. Direct detection of the formation of V-amylose helix by single molecule force spectroscopy.
    Zhang Q; Lu Z; Hu H; Yang W; Marszalek PE
    J Am Chem Soc; 2006 Jul; 128(29):9387-93. PubMed ID: 16848474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic properties of single amylose chains in water: a quantum mechanical and AFM study.
    Lu Z; Nowak W; Lee G; Marszalek PE; Yang W
    J Am Chem Soc; 2004 Jul; 126(29):9033-41. PubMed ID: 15264836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single crystals of V amylose complexed with n-butanol or n-pentanol: structural features and properties.
    Helbert W; Chanzy H
    Int J Biol Macromol; 1994 Aug; 16(4):207-13. PubMed ID: 7848968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amylose folding under the influence of lipids.
    López CA; de Vries AH; Marrink SJ
    Carbohydr Res; 2012 Dec; 364():1-7. PubMed ID: 23128420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Assessment of the Conformational Heterogeneity in Amylose across Force Fields.
    Koneru JK; Zhu X; Mondal J
    J Chem Theory Comput; 2019 Nov; 15(11):6203-6212. PubMed ID: 31560849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct probing of sorbent-solvent interactions for amylose tris(3,5-dimethylphenylcarbamate) using infrared spectroscopy, X-ray diffraction, solid-state NMR, and DFT modeling.
    Kasat RB; Zvinevich Y; Hillhouse HW; Thomson KT; Wang NH; Franses EI
    J Phys Chem B; 2006 Jul; 110(29):14114-22. PubMed ID: 16854108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-dependent conformation of amylose tris(phenylcarbamate) as deduced from scattering and viscosity data.
    Fujii T; Terao K; Tsuda M; Kitamura S; Norisuye T
    Biopolymers; 2009 Sep; 91(9):729-36. PubMed ID: 19402142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fingerprinting polysaccharides with single-molecule atomic force microscopy.
    Marszalek PE; Li H; Fernandez JM
    Nat Biotechnol; 2001 Mar; 19(3):258-62. PubMed ID: 11231560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray structure of the cyclomaltohexaicosaose triiodide inclusion complex provides a model for amylose-iodine at atomic resolution.
    Nimz O; Gessler K; Usón I; Laettig S; Welfle H; Sheldrick GM; Saenger W
    Carbohydr Res; 2003 Apr; 338(9):977-86. PubMed ID: 12681922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific inclusion mode of guest compounds in the amylose complex analyzed by solid state NMR spectroscopy.
    Tozuka Y; Takeshita A; Nagae A; Wongmekiat A; Moribe K; Oguchi T; Yamamoto K
    Chem Pharm Bull (Tokyo); 2006 Aug; 54(8):1097-101. PubMed ID: 16880651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose).
    Gessler K; Usón I; Takaha T; Krauss N; Smith SM; Okada S; Sheldrick GM; Saenger W
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4246-51. PubMed ID: 10200247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double helix formation from non-natural amylose analog polysaccharides.
    Yui T; Uto T; Nakauchida T; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2018 Jun; 189():184-189. PubMed ID: 29580397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Side-chain-dependent helical conformation of amylose alkylcarbamates: amylose tris(ethylcarbamate) and amylose tris(n-hexylcarbamate).
    Terao K; Maeda F; Oyamada K; Ochiai T; Kitamura S; Sato T
    J Phys Chem B; 2012 Oct; 116(42):12714-20. PubMed ID: 23039368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of 2,3-di-O-alkylated amyloses: hydrophobic substitution destabilizes helical conformation.
    Breitinger HG
    Biopolymers; 2003 Jul; 69(3):301-10. PubMed ID: 12833257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water.
    Cheng L; Feng T; Zhang B; Zhu X; Hamaker B; Zhang H; Campanella O
    Carbohydr Polym; 2018 Sep; 196():56-65. PubMed ID: 29891324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent-dependent conformation of a regioselective amylose carbamate: amylose-2-acetyl-3,6-bis(phenylcarbamate).
    Tsuda M; Terao K; Kitamura S; Sato T
    Biopolymers; 2012 Dec; 97(12):1010-7. PubMed ID: 22987591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supermolecular structure of cellulose/amylose blends prepared from aqueous NaOH solutions and effects of amylose on structural formation of cellulose from its solution.
    Miyamoto H; Ago M; Yamane C; Seguchi M; Ueda K; Okajima K
    Carbohydr Res; 2011 May; 346(6):807-14. PubMed ID: 21392738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear Overhauser effect spectroscopy (NOESY) detection of the specific interaction between substituents in cellulose and amylose triacetates.
    Tezuka Y
    Biopolymers; 1994 Nov; 34(11):1477-81. PubMed ID: 7827261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-responsive behavior of inclusion complexes between amylose and polytetrahydrofuran.
    Rachmawati R; Woortman AJ; Loos K
    Macromol Biosci; 2014 Jan; 14(1):56-68. PubMed ID: 23996920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal and molecular structure of VH amylose by electron diffraction analysis.
    Brisson J; Chanzy H; Winter WT
    Int J Biol Macromol; 1991 Feb; 13(1):31-9. PubMed ID: 2059581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.