These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
769 related articles for article (PubMed ID: 16848549)
41. Activation of glucose transport and AMP-activated protein kinase during muscle contraction in adenylate kinase-1 knockout mice. Zhang SJ; Sandström ME; Aydin J; Westerblad H; Wieringa B; Katz A Acta Physiol (Oxf); 2008 Mar; 192(3):413-20. PubMed ID: 17973952 [TBL] [Abstract][Full Text] [Related]
42. Effects of water-misting sprays with forced ventilation on post mortem glycolysis, AMP-activated protein kinase and meat quality of broilers after transport during summer. Jiang N; Xing T; Han M; Deng S; Xu X Anim Sci J; 2016 May; 87(5):718-28. PubMed ID: 26712455 [TBL] [Abstract][Full Text] [Related]
43. AMP-activated protein kinase in the heart: role during health and disease. Arad M; Seidman CE; Seidman JG Circ Res; 2007 Mar; 100(4):474-88. PubMed ID: 17332438 [TBL] [Abstract][Full Text] [Related]
44. AMPK and ACC phosphorylation: effect of leptin, muscle fibre type and obesity. Janovská A; Hatzinikolas G; Staikopoulos V; McInerney J; Mano M; Wittert GA Mol Cell Endocrinol; 2008 Mar; 284(1-2):1-10. PubMed ID: 18255222 [TBL] [Abstract][Full Text] [Related]
45. AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus. Jibb LA; Richards JG J Exp Biol; 2008 Oct; 211(Pt 19):3111-22. PubMed ID: 18805810 [TBL] [Abstract][Full Text] [Related]
46. Activation of AMP-activated protein kinase by kainic acid mediates brain-derived neurotrophic factor expression through a NF-kappaB dependent mechanism in C6 glioma cells. Yoon H; Oh YT; Lee JY; Choi JH; Lee JH; Baik HH; Kim SS; Choe W; Yoon KS; Ha J; Kang I Biochem Biophys Res Commun; 2008 Jul; 371(3):495-500. PubMed ID: 18445478 [TBL] [Abstract][Full Text] [Related]
47. Proteomics analysis as an approach to understand the formation of pale, soft, and exudative (PSE) pork. Zequan X; Yonggang S; Guangjuan L; Shijun X; Li Z; Mingrui Z; Yanli X; Zirong W Meat Sci; 2021 Jul; 177():108353. PubMed ID: 33721680 [TBL] [Abstract][Full Text] [Related]
48. Glycolytic potential and activity of adenosine monophosphate kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) in steer carcasses with normal (<5.8) or high (>5.9) 24h pH determined in M. longissimus dorsi. Apaoblaza A; Galaz A; Strobel P; Ramírez-Reveco A; Jeréz-Timaure N; Gallo C Meat Sci; 2015 Mar; 101():83-9. PubMed ID: 25462384 [TBL] [Abstract][Full Text] [Related]
49. Targeting of the catalytic subunit of protein phosphatase-1 to the glycolytic enzyme phosphofructokinase. Zhao S; Lee EY Biochemistry; 1997 Jul; 36(27):8318-24. PubMed ID: 9204878 [TBL] [Abstract][Full Text] [Related]
50. The regulation of AMP-activated protein kinase by upstream kinases. Carling D; Sanders MJ; Woods A Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S55-9. PubMed ID: 18719600 [TBL] [Abstract][Full Text] [Related]
51. Regulation of the renal-specific Na+-K+-2Cl- co-transporter NKCC2 by AMP-activated protein kinase (AMPK). Fraser SA; Gimenez I; Cook N; Jennings I; Katerelos M; Katsis F; Levidiotis V; Kemp BE; Power DA Biochem J; 2007 Jul; 405(1):85-93. PubMed ID: 17341212 [TBL] [Abstract][Full Text] [Related]
52. Fructose-2,6-bisphosphate counteracts guanidinium chloride-, thermal-, and ATP-induced dissociation of skeletal muscle key glycolytic enzyme 6-phosphofructo-1-kinase: A structural mechanism for PFK allosteric regulation. Zancan P; Almeida FV; Faber-Barata J; Dellias JM; Sola-Penna M Arch Biochem Biophys; 2007 Nov; 467(2):275-82. PubMed ID: 17923106 [TBL] [Abstract][Full Text] [Related]
53. Comparative study of phosphofructokinase from rat small intestine and liver. Control by fructose-2,6-bisphosphate and other effectors. Tseung CW; Carmona A Acta Cient Venez; 1990; 41(5-6):311-6. PubMed ID: 1967094 [TBL] [Abstract][Full Text] [Related]
54. Shelf life of pork from five different quality classes. Faucitano L; Ielo MC; Ster C; Lo Fiego DP; Methot S; Saucier L Meat Sci; 2010 Mar; 84(3):466-9. PubMed ID: 20374811 [TBL] [Abstract][Full Text] [Related]
55. Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. Hue L; Beauloye C; Marsin AS; Bertrand L; Horman S; Rider MH J Mol Cell Cardiol; 2002 Sep; 34(9):1091-7. PubMed ID: 12392881 [TBL] [Abstract][Full Text] [Related]
56. A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics. Smolen P J Theor Biol; 1995 May; 174(2):137-48. PubMed ID: 7643610 [TBL] [Abstract][Full Text] [Related]
57. Influence of ante- and peri-mortem factors on biochemical and physical characteristics of turkey breast muscle. van Hoof J Tijdschr Diergeneeskd; 1979 Jan; 104(2):29-36. PubMed ID: 419514 [TBL] [Abstract][Full Text] [Related]
58. Glycolysis and energy metabolism in rat liver during warm and cold ischemia: evidence of an activation of the regulatory enzyme phosphofructokinase. Churchill TA; Cheetham KM; Fuller BJ Cryobiology; 1994 Oct; 31(5):441-52. PubMed ID: 7988153 [TBL] [Abstract][Full Text] [Related]
59. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Scheffler TL; Gerrard DE Meat Sci; 2007 Sep; 77(1):7-16. PubMed ID: 22061391 [TBL] [Abstract][Full Text] [Related]
60. Phosphorproteome Changes of Myofibrillar Proteins at Early Post-mortem Time in Relation to Pork Quality As Affected by Season. Li X; Fang T; Zong M; Shi X; Xu X; Dai C; Li C; Zhou G J Agric Food Chem; 2015 Dec; 63(47):10287-94. PubMed ID: 26549830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]