These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 16848758)
1. Ascorbate removes key precursors to oxidative damage by cell-free haemoglobin in vitro and in vivo. Dunne J; Caron A; Menu P; Alayash AI; Buehler PW; Wilson MT; Silaghi-Dumitrescu R; Faivre B; Cooper CE Biochem J; 2006 Nov; 399(3):513-24. PubMed ID: 16848758 [TBL] [Abstract][Full Text] [Related]
2. Oxidation of Erythrocytes Enhance the Production of Reactive Species in the Presence of Artemisinins. Tsamesidis I; Pério P; Pantaleo A; Reybier K Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32646002 [TBL] [Abstract][Full Text] [Related]
3. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate. Trotta RJ; Sullivan SG; Stern A Biochem J; 1982 May; 204(2):405-15. PubMed ID: 7115337 [TBL] [Abstract][Full Text] [Related]
4. Oxidative damage to human red cells induced by copper and iron complexes in the presence of ascorbate. Shinar E; Rachmilewitz EA; Shifter A; Rahamim E; Saltman P Biochim Biophys Acta; 1989 Oct; 1014(1):66-72. PubMed ID: 2804091 [TBL] [Abstract][Full Text] [Related]
5. Oxidation and haem loss kinetics of poly(ethylene glycol)-conjugated haemoglobin (MP4): dissociation between in vitro and in vivo oxidation rates. Vandegriff KD; Malavalli A; Minn C; Jiang E; Lohman J; Young MA; Samaja M; Winslow RM Biochem J; 2006 Nov; 399(3):463-71. PubMed ID: 16813564 [TBL] [Abstract][Full Text] [Related]
6. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system. Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455 [TBL] [Abstract][Full Text] [Related]
7. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis. Trotta RJ; Sullivan SG; Stern A Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393 [TBL] [Abstract][Full Text] [Related]
8. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute. Cooper CE; Silkstone GGA; Simons M; Rajagopal B; Syrett N; Shaik T; Gretton S; Welbourn E; Bülow L; Eriksson NL; Ronda L; Mozzarelli A; Eke A; Mathe D; Reeder BJ Free Radic Biol Med; 2019 Apr; 134():106-118. PubMed ID: 30594736 [TBL] [Abstract][Full Text] [Related]
9. Redox cycling of human methaemoglobin by H2O2 yields persistent ferryl iron and protein based radicals. Patel RP; Svistunenko DA; Darley-Usmar VM; Symons MC; Wilson MT Free Radic Res; 1996 Aug; 25(2):117-23. PubMed ID: 8885329 [TBL] [Abstract][Full Text] [Related]
10. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? Puppo A; Halliwell B Biochem J; 1988 Jan; 249(1):185-90. PubMed ID: 3342006 [TBL] [Abstract][Full Text] [Related]
11. Ascorbate 6-palmitate protects human erythrocytes from oxidative damage. Ross D; Mendiratta S; Qu ZC; Cobb CE; May JM Free Radic Biol Med; 1999 Jan; 26(1-2):81-9. PubMed ID: 9890643 [TBL] [Abstract][Full Text] [Related]
12. A new sensitive assay reveals that hemoglobin is oxidatively modified in vivo. Vollaard NB; Reeder BJ; Shearman JP; Menu P; Wilson MT; Cooper CE Free Radic Biol Med; 2005 Nov; 39(9):1216-28. PubMed ID: 16214037 [TBL] [Abstract][Full Text] [Related]
13. Peroxynitrite induces long-lived tyrosyl radical(s) in oxyhemoglobin of red blood cells through a reaction involving CO2 and a ferryl species. Minetti M; Scorza G; Pietraforte D Biochemistry; 1999 Feb; 38(7):2078-87. PubMed ID: 10026290 [TBL] [Abstract][Full Text] [Related]
14. Novel Redox Active Tyrosine Mutations Enhance the Regeneration of Functional Oxyhemoglobin from Methemoglobin: Implications for Design of Blood Substitutes. Silkstone GGA; Simons M; Rajagopal BS; Shaik T; Reeder BJ; Cooper CE Adv Exp Med Biol; 2018; 1072():221-225. PubMed ID: 30178349 [TBL] [Abstract][Full Text] [Related]
15. Role of redox potential of hemoglobin-based oxygen carriers on methemoglobin reduction by plasma components. Dorman SC; Kenny CF; Miller L; Hirsch RE; Harrington JP Artif Cells Blood Substit Immobil Biotechnol; 2002 Jan; 30(1):39-51. PubMed ID: 12000225 [TBL] [Abstract][Full Text] [Related]
16. Studies on the mechanisms of oxidation in the erythrocyte by metabolites of primaquine. Fletcher KA; Barton PF; Kelly JA Biochem Pharmacol; 1988 Jul; 37(13):2683-90. PubMed ID: 2839199 [TBL] [Abstract][Full Text] [Related]
17. Oxidative effects of iron on erythrocytes. Rice-Evans C; Baysal E; Kontoghiorghes GJ; Flynn DM; Hoffbrand AV Free Radic Res Commun; 1985; 1(1):55-62. PubMed ID: 3880015 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of oxyhaemoglobin breakdown on reaction with acetylphenylhydrazine. French JK; Winterbourn CC; Carrell RW Biochem J; 1978 Jul; 173(1):19-26. PubMed ID: 210765 [TBL] [Abstract][Full Text] [Related]
19. The reaction of ascorbic acid with different heme iron redox states of myoglobin. Antioxidant and prooxidant aspects. Giulivi C; Cadenas E FEBS Lett; 1993 Oct; 332(3):287-90. PubMed ID: 8405472 [TBL] [Abstract][Full Text] [Related]
20. The oxidation of oxyhaemoglobin by glyceraldehyde and other simple monosaccharides. Thornalley PJ; Wolff SP; Crabbe MJ; Stern A Biochem J; 1984 Feb; 217(3):615-22. PubMed ID: 6324741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]