These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 16849137)
41. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues. Inanc B; Inoue Y; Yamada M; Ono Y; Nagamori M J Hazard Mater; 2007 Mar; 141(3):793-802. PubMed ID: 17030419 [TBL] [Abstract][Full Text] [Related]
42. The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites. Lo HM; Liao YL J Hazard Mater; 2007 Apr; 142(1-2):512-9. PubMed ID: 17008003 [TBL] [Abstract][Full Text] [Related]
43. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator. Lievens P; Verbinnen B; Bollaert P; Alderweireldt N; Mertens G; Elsen J; Vandecasteele C Environ Technol; 2011 Oct; 32(13-14):1637-47. PubMed ID: 22329155 [TBL] [Abstract][Full Text] [Related]
44. Influence of tropical seasonal variations on landfill leachate characteristics--results from lysimeter studies. Tränkler J; Visvanathan C; Kuruparan P; Tubtimthai O Waste Manag; 2005; 25(10):1013-20. PubMed ID: 16002273 [TBL] [Abstract][Full Text] [Related]
45. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control. Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260 [TBL] [Abstract][Full Text] [Related]
46. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Lombardi L; Carnevale E; Corti A Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103 [TBL] [Abstract][Full Text] [Related]
47. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon. Löschau M Waste Manag Res; 2018 Apr; 36(4):342-350. PubMed ID: 29451103 [TBL] [Abstract][Full Text] [Related]
48. Pilot-scale comparison of two hybrid-passive landfill leachate treatment systems operated in a cold climate. Speer S; Champagne P; Anderson B Bioresour Technol; 2012 Jan; 104():119-26. PubMed ID: 22104095 [TBL] [Abstract][Full Text] [Related]
49. Landfilling of pretreated municipal solid waste by natural convection of air and its effects. Mahar RB; Liu J; Yue D; Nie Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):351-9. PubMed ID: 17365302 [TBL] [Abstract][Full Text] [Related]
50. Physical and chemical processes in baled waste fuel, with emphasis on gaseous emissions. Nammari DR; Hogland W; Moutavtchi V; Marques M; Nimmermark S Waste Manag Res; 2003 Aug; 21(4):309-17. PubMed ID: 14531517 [TBL] [Abstract][Full Text] [Related]
51. Assessment of hazardous air pollutants from disposal of munitions in a prototype fluidized bed incinerator. Carroll JW; Guinivan TL; Tuggle RM; Williams KE; Lillian DL Am Ind Hyg Assoc J; 1979 Feb; 40(2):147-58. PubMed ID: 495446 [TBL] [Abstract][Full Text] [Related]
52. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill. Sanphoti N; Towprayoon S; Chaiprasert P; Nopharatana A J Environ Manage; 2006 Oct; 81(1):27-35. PubMed ID: 16580123 [TBL] [Abstract][Full Text] [Related]
53. Energy and greenhouse gas balances for a solid waste incineration plant: a case study. Brinck K; Poulsen TG; Skov H Waste Manag Res; 2011 Oct; 29(10 Suppl):13-9. PubMed ID: 21746759 [TBL] [Abstract][Full Text] [Related]
54. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed. Yu YH; Chung J Environ Technol; 2015; 36(22):2903-10. PubMed ID: 26061904 [TBL] [Abstract][Full Text] [Related]
55. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Stoiber T; Evans S; Naidenko OV Chemosphere; 2020 Dec; 260():127659. PubMed ID: 32698118 [TBL] [Abstract][Full Text] [Related]
56. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane. Corbella BM; de Diego LF; García-Labiano F; Adánez J; Palaciost JM Environ Sci Technol; 2005 Aug; 39(15):5796-803. PubMed ID: 16124317 [TBL] [Abstract][Full Text] [Related]
57. Pretreated waste landfilling: relation between leachate characteristics and mechanical behaviour. Boni MR; Chiavola A; Sbaffoni S Waste Manag; 2006; 26(10):1156-65. PubMed ID: 16513340 [TBL] [Abstract][Full Text] [Related]
58. Nitrogen management in landfill leachate: application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process. Sri Shalini S; Joseph K Waste Manag; 2012 Dec; 32(12):2385-400. PubMed ID: 22766438 [TBL] [Abstract][Full Text] [Related]
59. Effect of layers composition on leachate property from functional layer embedded landfill. Lou Z; Feng J; Zhong S; Yuan H; Zhu N Bioresour Technol; 2011 Jul; 102(14):7057-63. PubMed ID: 21596557 [TBL] [Abstract][Full Text] [Related]
60. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE). Manfredi S; Christensen TH; Scharff H; Jacobs J Waste Manag Res; 2010 Feb; 28(2):130-40. PubMed ID: 19710111 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]