These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 16849152)

  • 1. Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum.
    Plattner L
    J R Soc Interface; 2004 Nov; 1(1):49-59. PubMed ID: 16849152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed electromagnetic simulation for the structural color of butterfly wings.
    Lee RT; Smith GS
    Appl Opt; 2009 Jul; 48(21):4177-90. PubMed ID: 19623232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Color generation in butterfly wings and fabrication of such structures.
    Wong TH; Gupta MC; Robins B; Levendusky TL
    Opt Lett; 2003 Dec; 28(23):2342-4. PubMed ID: 14680176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies.
    Siddique RH; Diewald S; Leuthold J; Hölscher H
    Opt Express; 2013 Jun; 21(12):14351-61. PubMed ID: 23787623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance.
    Yoshioka S; Kinoshita S
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):134-41. PubMed ID: 16478069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging scatterometry of butterfly wing scales.
    Stavenga DG; Leertouwer HL; Pirih P; Wehling MF
    Opt Express; 2009 Jan; 17(1):193-202. PubMed ID: 19129888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coloration mechanisms and phylogeny of Morpho butterflies.
    Giraldo MA; Yoshioka S; Liu C; Stavenga DG
    J Exp Biol; 2016 Dec; 219(Pt 24):3936-3944. PubMed ID: 27974535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale.
    Kinoshita S; Yoshioka S; Kawagoe K
    Proc Biol Sci; 2002 Jul; 269(1499):1417-21. PubMed ID: 12137569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours.
    Wickham S; Large MC; Poladian L; Jermiin LS
    J R Soc Interface; 2006 Feb; 3(6):99-108. PubMed ID: 16849221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling of the radiative properties of Morpho butterfly wing scales.
    Mejdoubi A; Andraud C; Berthier S; Lafait J; Boulenguez J; Richalot E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022705. PubMed ID: 23496546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.
    Wang W; Zhang W; Chen W; Gu J; Liu Q; Deng T; Zhang D
    Opt Lett; 2013 Jan; 38(2):169-71. PubMed ID: 23454951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking.
    Siddique RH; Vignolini S; Bartels C; Wacker I; Hölscher H
    Sci Rep; 2016 Nov; 6():36204. PubMed ID: 27805005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomically diverse butterfly scales all produce structural colours by coherent scattering.
    Prum RO; Quinn T; Torres RH
    J Exp Biol; 2006 Feb; 209(Pt 4):748-65. PubMed ID: 16449568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of higher colour response with ambient refractive index in Papilio blumei as compared to Morpho rhetenor.
    Wang W; Zhang W; Fang X; Huang Y; Liu Q; Gu J; Zhang D
    Sci Rep; 2014 Jul; 4():5591. PubMed ID: 24998707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morpho peleides butterfly wing imprints as structural colour stamp.
    Zobl S; Salvenmoser W; Schwerte T; Gebeshuber IC; Schreiner M
    Bioinspir Biomim; 2016 Feb; 11(1):016006. PubMed ID: 26835900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly.
    Yoshioka S; Kinoshita S
    Proc Biol Sci; 2004 Mar; 271(1539):581-7. PubMed ID: 15156915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi-functional photonic structure in the Papilio nireus (Papilionidae): modeling by scattering-matrix optical simulations.
    Van Hooijdonk E; Vandenbem C; Berthier S; Vigneron JP
    Opt Express; 2012 Sep; 20(20):22001-11. PubMed ID: 23037350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly.
    Siddique RH; Gomard G; Hölscher H
    Nat Commun; 2015 Apr; 6():6909. PubMed ID: 25901418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic effects in natural nanostructures on Morpho cypris and Greta oto butterfly wings.
    Barrera-Patiño CP; Vollet-Filho JD; Teixeira-Rosa RG; Quiroz HP; Dussan A; Inada NM; Bagnato VS; Rey-González RR
    Sci Rep; 2020 Apr; 10(1):5786. PubMed ID: 32238903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi.
    Michielsen K; De Raedt H; Stavenga DG
    J R Soc Interface; 2010 May; 7(46):765-71. PubMed ID: 19828506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.