These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16849153)

  • 1. Retinally-generated saccadic suppression of a locust looming-detector neuron: investigations using a robot locust.
    Santer RD; Stafford R; Rind FC
    J R Soc Interface; 2004 Nov; 1(1):61-77. PubMed ID: 16849153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measurements of centrally and retinally generated saccadic suppression in a locust movement detector neurone.
    Zaretsky M
    J Physiol; 1982 Jul; 328():521-33. PubMed ID: 7131324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent activation of feed-forward inhibition in a looming-sensitive neuron.
    Gabbiani F; Cohen I; Laurent G
    J Neurophysiol; 2005 Sep; 94(3):2150-61. PubMed ID: 15928055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion detectors in the locust visual system: From biology to robot sensors.
    Rind FC
    Microsc Res Tech; 2002 Feb; 56(4):256-69. PubMed ID: 11877801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccadic suppression by corollary discharge in the locust.
    Zaretsky M; Rowell CH
    Nature; 1979 Aug; 280(5723):583-5. PubMed ID: 460439
    [No Abstract]   [Full Text] [Related]  

  • 6. A model of the saccade-generating system that accounts for trajectory variations produced by competing visual stimuli.
    Arai K; Keller EL
    Biol Cybern; 2005 Jan; 92(1):21-37. PubMed ID: 15650897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of a looming-sensitive neuron to compound and paired object approaches.
    Guest BB; Gray JR
    J Neurophysiol; 2006 Mar; 95(3):1428-41. PubMed ID: 16319198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Collision Perception Visual Neural Network With Specific Selectivity to Darker Objects.
    Fu Q; Hu C; Peng J; Rind FC; Yue S
    IEEE Trans Cybern; 2020 Dec; 50(12):5074-5088. PubMed ID: 31804947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shaping the collision selectivity in a looming sensitive neuron model with parallel ON and OFF pathways and spike frequency adaptation.
    Fu Q; Hu C; Peng J; Yue S
    Neural Netw; 2018 Oct; 106():127-143. PubMed ID: 30059829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a mobile robot to study locust collision avoidance responses.
    Blanchard M; Verschure PF; Rind FC
    Int J Neural Syst; 1999 Oct; 9(5):405-10. PubMed ID: 10630469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated Saccadic Stimuli Suppress ON-Type Direction-Selective Retinal Ganglion Cells via Glycinergic Inhibition.
    Sivyer B; Tomlinson A; Taylor WR
    J Neurosci; 2019 May; 39(22):4312-4322. PubMed ID: 30926751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccadic and smooth pursuit eye movements: computational modeling of a common inhibitory mechanism in brainstem.
    Rahafrooz A; Fallah A; Jafari AH; Bakouie F; Zendehrouh S; Gharibzadeh S
    Neurosci Lett; 2008 Dec; 448(1):84-9. PubMed ID: 18938218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fixational saccadic eye movements are altered in anisometropic amblyopia.
    Shi XF; Xu LM; Li Y; Wang T; Zhao KX; Sabel BA
    Restor Neurol Neurosci; 2012; 30(6):445-62. PubMed ID: 23001901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-down control of saccades as part of a generalized model of proactive inhibitory control.
    Ballanger B
    J Neurophysiol; 2009 Nov; 102(5):2578-80. PubMed ID: 19710373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural network based on the input organization of an identified neuron signaling impending collision.
    Rind FC; Bramwell DI
    J Neurophysiol; 1996 Mar; 75(3):967-85. PubMed ID: 8867110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network study of precollicular saccadic averaging.
    Krommenhoek KP; Wiegerinck WA
    Biol Cybern; 1998 Jun; 78(6):465-77. PubMed ID: 9711820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-linear neuronal responses as an emergent property of afferent networks: a case study of the locust lobula giant movement detector.
    Bermúdez i Badia S; Bernardet U; Verschure PF
    PLoS Comput Biol; 2010 Mar; 6(3):e1000701. PubMed ID: 20300653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between saccadic suppression and perceptual stability.
    Watson TL; Krekelberg B
    Curr Biol; 2009 Jun; 19(12):1040-3. PubMed ID: 19481454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tests of models for saccade-vergence interaction using novel stimulus conditions.
    Kumar AN; Han YH; Kirsch RF; Dell'Osso LF; King WM; Leigh RJ
    Biol Cybern; 2006 Aug; 95(2):143-57. PubMed ID: 16699782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.