BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16849178)

  • 1. Comparative study of corneal strip extensometry and inflation tests.
    Elsheikh A; Anderson K
    J R Soc Interface; 2005 Jun; 2(3):177-85. PubMed ID: 16849178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the ex vivo biomechanical properties of porcine cornea with inflation test for corneal xenotransplantation.
    Bao F; Jiang L; Wang X; Zhang D; Wang Q; Zeng Y
    J Med Eng Technol; 2012 Jan; 36(1):17-21. PubMed ID: 22085017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delineating Corneal Elastic Anisotropy in a Porcine Model Using Noncontact OCT Elastography and Ex Vivo Mechanical Tests.
    Kirby MA; Pitre JJ; Liou HC; Li DS; Wang RK; Pelivanov I; O'Donnell M; Shen TT
    Ophthalmol Sci; 2021 Dec; 1(4):100058. PubMed ID: 36246948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic shear properties of the corneal stroma.
    Hatami-Marbini H
    J Biomech; 2014 Feb; 47(3):723-8. PubMed ID: 24368145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of waveform-derived corneal stiffness and stress-strain extensometry-derived corneal stiffness using different cross-linking irradiances: an experimental study with air-puff applanation of ex vivo porcine eyes.
    Herber R; Francis M; Spoerl E; Pillunat LE; Raiskup F; Sinha Roy A
    Graefes Arch Clin Exp Ophthalmol; 2020 Oct; 258(10):2173-2184. PubMed ID: 32556637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of biomechanical properties between human and porcine cornea.
    Zeng Y; Yang J; Huang K; Lee Z; Lee X
    J Biomech; 2001 Apr; 34(4):533-7. PubMed ID: 11266678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Corneal Biomechanical Properties with Inflation Test Using Optical Coherence Tomography.
    Wang L; Tian L; Huang Y; Huang Y; Zheng Y
    Ann Biomed Eng; 2018 Feb; 46(2):247-256. PubMed ID: 29297099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the viscoelastic properties of the human cornea using Scheimpflug imaging in inflation experiment of eye globes.
    Lombardo G; Serrao S; Rosati M; Lombardo M
    PLoS One; 2014; 9(11):e112169. PubMed ID: 25397674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical characterization of porcine corneas.
    Boschetti F; Triacca V; Spinelli L; Pandolfi A
    J Biomech Eng; 2012 Mar; 134(3):031003. PubMed ID: 22482683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscale assessment of corneal viscoelastic properties under physiological pressures.
    Kazaili A; Geraghty B; Akhtar R
    J Mech Behav Biomed Mater; 2019 Dec; 100():103375. PubMed ID: 31376792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical properties of the keratoconic cornea: a review.
    Vellara HR; Patel DV
    Clin Exp Optom; 2015 Jan; 98(1):31-8. PubMed ID: 25545947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal Biomechanical Evaluation After Conventional Corneal Crosslinking With Oxygen Enrichment.
    Wang J; Wang L; Li Z; Wang YM; Zhu K; Mu G
    Eye Contact Lens; 2020 Sep; 46(5):306-309. PubMed ID: 31425353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Differences Between Femtosecond Lenticule Extraction (FLEx) and Small Incision Lenticule Extraction (SmILE) Tested by 2D-Extensometry in Ex Vivo Porcine Eyes.
    Spiru B; Kling S; Hafezi F; Sekundo W
    Invest Ophthalmol Vis Sci; 2017 May; 58(5):2591-2595. PubMed ID: 28494492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes.
    Nguyen BA; Reilly MA; Roberts CJ
    Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.
    Bekesi N; Dorronsoro C; de la Hoz A; Marcos S
    PLoS One; 2016; 11(10):e0165669. PubMed ID: 27792759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation and depth dependent mechanical properties of the porcine cornea: Experiments and parameter identification.
    Nambiar MH; Liechti L; Müller F; Bernau W; Studer H; Roy AS; Seiler TG; Büchler P
    Exp Eye Res; 2022 Nov; 224():109266. PubMed ID: 36179857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas.
    Hoeltzel DA; Altman P; Buzard K; Choe K
    J Biomech Eng; 1992 May; 114(2):202-15. PubMed ID: 1602763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth-Dependent Out-of-Plane Young's Modulus of the Human Cornea.
    Ramirez-Garcia MA; Sloan SR; Nidenberg B; Khalifa YM; Buckley MR
    Curr Eye Res; 2018 May; 43(5):595-604. PubMed ID: 29283675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relation between hydration and mechanical behavior of bovine cornea in tension.
    Hatami-Marbini H; Rahimi A
    J Mech Behav Biomed Mater; 2014 Aug; 36():90-7. PubMed ID: 24814185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical properties of human and porcine corneas.
    Elsheikh A; Alhasso D; Rama P
    Exp Eye Res; 2008 May; 86(5):783-90. PubMed ID: 18396276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.