These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16849178)

  • 21. The effect of estrogen and progesterone on porcine corneal biomechanical properties.
    Walter E; Matlov Kormas R; Marcovich AL; Lior Y; Sui X; Wagner D; Knyazer B
    Graefes Arch Clin Exp Ophthalmol; 2019 Dec; 257(12):2691-2695. PubMed ID: 31624911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking.
    Kling S; Ginis H; Marcos S
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):5010-5. PubMed ID: 22736617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new method to determine rate-dependent material parameters of corneal extracellular matrix.
    Hatami-Marbini H; Etebu E
    Ann Biomed Eng; 2013 Nov; 41(11):2399-408. PubMed ID: 23872935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ex Vivo Transepithelial Collagen Cross-linking in Porcine and Human Corneas Using Human Decorin Core Protein.
    Metzler KM; Roberts CJ; Mahmoud AM; Agarwal G; Liu J
    J Refract Surg; 2016 Jun; 32(6):410-7. PubMed ID: 27304605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental evaluation of stiffening effect induced by UVA/Riboflavin corneal cross-linking using intact porcine eye globes.
    Chang SH; Zhou D; Eliasy A; Li YC; Elsheikh A
    PLoS One; 2020; 15(11):e0240724. PubMed ID: 33147249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical anisotropy of porcine cornea and correlation with stromal microstructure.
    Elsheikh A; Alhasso D
    Exp Eye Res; 2009 Jun; 88(6):1084-91. PubMed ID: 19450454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation.
    Schumacher S; Oeftiger L; Mrochen M
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9048-52. PubMed ID: 22025568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of UVA/Riboflavin Collagen Crosslinking on Biomechanics of Artificially Swollen Corneas.
    Hatami-Marbini H; Jayaram SM
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):764-770. PubMed ID: 29392322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of hydration state and storage media on corneal biomechanical response from in vitro inflation tests.
    Kling S; Marcos S
    J Refract Surg; 2013 Jul; 29(7):490-7. PubMed ID: 23820232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation into the elastic properties of ex vivo porcine corneas subjected to inflation test after cross-linking treatment.
    Matteoli S; Virga A; Paladini I; Mencucci R; Corvi A
    J Appl Biomater Funct Mater; 2016 May; 14(2):e163-70. PubMed ID: 26952586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of high-dose cortisol on the biomechanics of incubated porcine corneal strips.
    Spoerl E; Zubaty V; Terai N; Pillunat LE; Raiskup F
    J Refract Surg; 2009 Sep; 25(9):S794-8. PubMed ID: 19772253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal and biomechanical parameters of porcine cornea.
    Kampmeier J; Radt B; Birngruber R; Brinkmann R
    Cornea; 2000 May; 19(3):355-63. PubMed ID: 10832699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements.
    Aslanides IM; Dessi C; Georgoudis P; Charalambidis G; Vlassopoulos D; Coutsolelos AG; Kymionis G; Mukherjee A; Kitsopoulos TN
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):2240-5. PubMed ID: 27124315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of bathing solution on tensile properties of the cornea.
    Hatami-Marbini H; Rahimi A
    Exp Eye Res; 2014 Mar; 120():103-8. PubMed ID: 24333541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Thermo-mechanical behavior the the cornea].
    Spörl E; Genth U; Schmalfuss K; Seiler T
    Klin Monbl Augenheilkd; 1996 Feb; 208(2):112-6. PubMed ID: 8648984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation of corneal acoustic and elastic properties in a canine eye model.
    He X; Liu J
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):731-6. PubMed ID: 20926820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oestrogen-induced changes in biomechanics in the cornea as a possible reason for keratectasia.
    Spoerl E; Zubaty V; Raiskup-Wolf F; Pillunat LE
    Br J Ophthalmol; 2007 Nov; 91(11):1547-50. PubMed ID: 17591666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental assessment of corneal anisotropy.
    Elsheikh A; Brown M; Alhasso D; Rama P; Campanelli M; Garway-Heath D
    J Refract Surg; 2008 Feb; 24(2):178-87. PubMed ID: 18297943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of the geometry of the porcine cornea on the biomechanical response of inflation tests.
    Pandolfi A; Boschetti F
    Comput Methods Biomech Biomed Engin; 2015; 18(1):64-77. PubMed ID: 23521091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments.
    Kling S; Remon L; Pérez-Escudero A; Merayo-Lloves J; Marcos S
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3961-8. PubMed ID: 20335615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.