These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 16849190)
21. Representing perturbed dynamics in biological network models. Stoll G; Rougemont J; Naef F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011917. PubMed ID: 17677504 [TBL] [Abstract][Full Text] [Related]
22. Motif search in graphs: application to metabolic networks. Lacroix V; Fernandes CG; Sagot MF IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):360-8. PubMed ID: 17085845 [TBL] [Abstract][Full Text] [Related]
23. Efficient algorithms for detecting signaling pathways in protein interaction networks. Scott J; Ideker T; Karp RM; Sharan R J Comput Biol; 2006 Mar; 13(2):133-44. PubMed ID: 16597231 [TBL] [Abstract][Full Text] [Related]
24. Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways. Hardy S; Robillard PN Bioinformatics; 2008 Jan; 24(2):209-17. PubMed ID: 18033796 [TBL] [Abstract][Full Text] [Related]
27. Reverse engineering of dynamic networks. Stigler B; Jarrah A; Stillman M; Laubenbacher R Ann N Y Acad Sci; 2007 Dec; 1115():168-77. PubMed ID: 17925347 [TBL] [Abstract][Full Text] [Related]
28. Simple and fast alignment of metabolic pathways by exploiting local diversity. Wernicke S; Rasche F Bioinformatics; 2007 Aug; 23(15):1978-85. PubMed ID: 17540683 [TBL] [Abstract][Full Text] [Related]
29. Integrative model of the response of yeast to osmotic shock. Klipp E; Nordlander B; Krüger R; Gennemark P; Hohmann S Nat Biotechnol; 2005 Aug; 23(8):975-82. PubMed ID: 16025103 [TBL] [Abstract][Full Text] [Related]
30. Dynamic simulation of protein complex formation on a genomic scale. Beyer A; Wilhelm T Bioinformatics; 2005 Apr; 21(8):1610-6. PubMed ID: 15598828 [TBL] [Abstract][Full Text] [Related]
31. Proteomics and systems biology to tackle biological complexity: Yeast as a case study. Alberghina L; Cirulli C Proteomics; 2010 Dec; 10(24):4337-41. PubMed ID: 21061424 [TBL] [Abstract][Full Text] [Related]
33. Protein network inference from multiple genomic data: a supervised approach. Yamanishi Y; Vert JP; Kanehisa M Bioinformatics; 2004 Aug; 20 Suppl 1():i363-70. PubMed ID: 15262821 [TBL] [Abstract][Full Text] [Related]
34. Improving protein protein interaction prediction based on phylogenetic information using a least-squares support vector machine. Craig RA; Liao L Ann N Y Acad Sci; 2007 Dec; 1115():154-67. PubMed ID: 17925357 [TBL] [Abstract][Full Text] [Related]
35. Pairwise alignment of protein interaction networks. Koyutürk M; Kim Y; Topkara U; Subramaniam S; Szpankowski W; Grama A J Comput Biol; 2006 Mar; 13(2):182-99. PubMed ID: 16597234 [TBL] [Abstract][Full Text] [Related]
36. Filling gaps in a metabolic network using expression information. Kharchenko P; Vitkup D; Church GM Bioinformatics; 2004 Aug; 20 Suppl 1():i178-85. PubMed ID: 15262797 [TBL] [Abstract][Full Text] [Related]
37. Closing the circle of osmoregulation. D'haeseleer P Nat Biotechnol; 2005 Aug; 23(8):941-2. PubMed ID: 16082361 [No Abstract] [Full Text] [Related]
38. A weighted power framework for integrating multisource information: gene function prediction in yeast. Ray SS; Bandyopadhyay S; Pal SK IEEE Trans Biomed Eng; 2012 Apr; 59(4):1162-8. PubMed ID: 22318478 [TBL] [Abstract][Full Text] [Related]
39. Funneled landscape leads to robustness of cell networks: yeast cell cycle. Wang J; Huang B; Xia X; Sun Z PLoS Comput Biol; 2006 Nov; 2(11):e147. PubMed ID: 17112311 [TBL] [Abstract][Full Text] [Related]