These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16849212)

  • 1. The evolution of network topology by selective removal.
    Salathé M; May RM; Bonhoeffer S
    J R Soc Interface; 2005 Dec; 2(5):533-6. PubMed ID: 16849212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role-similarity based functional prediction in networked systems: application to the yeast proteome.
    Holme P; Huss M
    J R Soc Interface; 2005 Sep; 2(4):327-33. PubMed ID: 16849190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Networking genetic regulation and neural computation: directed network topology and its effect on the dynamics.
    Grönlund A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061908. PubMed ID: 15697403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertex similarity in networks.
    Leicht EA; Holme P; Newman ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026120. PubMed ID: 16605411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergent criticality from coevolution in random Boolean networks.
    Liu M; Bassler KE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041910. PubMed ID: 17155099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network robustness and fragility: percolation on random graphs.
    Callaway DS; Newman ME; Strogatz SH; Watts DJ
    Phys Rev Lett; 2000 Dec; 85(25):5468-71. PubMed ID: 11136023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential attachment in the evolution of metabolic networks.
    Light S; Kraulis P; Elofsson A
    BMC Genomics; 2005 Nov; 6():159. PubMed ID: 16281983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topology and static response of interaction networks in molecular biology.
    Radulescu O; Lagarrigue S; Siegel A; Veber P; Le Borgne M
    J R Soc Interface; 2006 Feb; 3(6):185-96. PubMed ID: 16849230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and evolutionary inference in gene networks: does topology matter?
    Siegal ML; Promislow DE; Bergman A
    Genetica; 2007 Jan; 129(1):83-103. PubMed ID: 16897451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex networks and simple models in biology.
    de Silva E; Stumpf MP
    J R Soc Interface; 2005 Dec; 2(5):419-30. PubMed ID: 16849202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and topology of scale-free networks under attack and defense strategies.
    Gallos LK; Cohen R; Argyrakis P; Bunde A; Havlin S
    Phys Rev Lett; 2005 May; 94(18):188701. PubMed ID: 15904414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Winner takes it all": strongest node rule for evolution of scale-free networks.
    Stefancić H; Zlatić V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036105. PubMed ID: 16241513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing gene regulatory networks: from random to scale-free connectivity.
    Wildenhain J; Crampin EJ
    Syst Biol (Stevenage); 2006 Jul; 153(4):247-56. PubMed ID: 16986626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale-free networks from varying vertex intrinsic fitness.
    Caldarelli G; Capocci A; De Los Rios P; Muñoz MA
    Phys Rev Lett; 2002 Dec; 89(25):258702. PubMed ID: 12484927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rugged fitness landscapes of Kauffman models with a scale-free network.
    Iguchi K; Kinoshita S; Yamada H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061901. PubMed ID: 16485968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal transduction networks: topology, response and biochemical processes.
    Soyer OS; Salathé M; Bonhoeffer S
    J Theor Biol; 2006 Jan; 238(2):416-25. PubMed ID: 16045939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of scaling in random networks.
    Barabasi AL; Albert R
    Science; 1999 Oct; 286(5439):509-12. PubMed ID: 10521342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymptotic states and topological structure of an activation-deactivation chemical network.
    Martelli C; Giansanti A; Arisi I; Rosato V
    J Theor Biol; 2007 Apr; 245(3):423-32. PubMed ID: 17188303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CORE-Net: exploiting prior knowledge and preferential attachment to infer biological interaction networks.
    Montefusco F; Cosentino C; Amato F
    IET Syst Biol; 2010 Sep; 4(5):296-310. PubMed ID: 20831343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the connectivity of a network: the network correlation function method.
    Barzel B; Biham O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046104. PubMed ID: 19905387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.