These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 16849246)

  • 1. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts.
    Hiromoto S; Hanawa T
    J R Soc Interface; 2006 Aug; 3(9):495-505. PubMed ID: 16849246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.
    Tang YC; Katsuma S; Fujimoto S; Hiromoto S
    Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.
    Vallet-RegĂ­ M; Izquierdo-Barba I; Gil FJ
    J Biomed Mater Res A; 2003 Nov; 67(2):674-8. PubMed ID: 14566812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of in site strain on passivated property of the 316L stainless steels.
    Jinlong L; Tongxiang L; Chen W; Ting G
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():32-6. PubMed ID: 26838820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Corrosion of stainless steel 201, 304 and 316L in the simulated sewage pipes reactor].
    Bao GD; Zuo JE; Wang YJ; Gan LL
    Huan Jing Ke Xue; 2014 Aug; 35(8):3002-6. PubMed ID: 25338372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.
    Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H
    Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of static stress on the corrosion behavior of 316L stainless steel in Ringer's solution.
    Bundy KJ; Vogelbaum MA; Desai VH
    J Biomed Mater Res; 1986 Apr; 20(4):493-505. PubMed ID: 3700443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L.
    Kao WH; Su YL; Horng JH; Zhang KX
    J Biomater Appl; 2016 Aug; 31(2):215-29. PubMed ID: 27422714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.
    Kim KT; Lee JH; Kim YS
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of simulated inflammation on the corrosion of 316L stainless steel.
    Brooks EK; Brooks RP; Ehrensberger MT
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():200-205. PubMed ID: 27987699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H
    Xu W; Yu F; Yang L; Zhang B; Hou B; Li Y
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():11-19. PubMed ID: 30184732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications.
    Rondelli G; Torricelli P; Fini M; Giardino R
    Biomaterials; 2005 Mar; 26(7):739-44. PubMed ID: 15350778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of ultra fine grained 316L stainless steel for implant applications.
    Muley SV; Vidvans AN; Chaudhari GP; Udainiya S
    Acta Biomater; 2016 Jan; 30():408-419. PubMed ID: 26518104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on biocompatibility of MIM 316L stainless steel].
    Wang G; Zhu S; Li Y; Zhao Y; Zhou K; Huang B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):329-31. PubMed ID: 17591253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel.
    Xi T; Shahzad MB; Xu D; Sun Z; Zhao J; Yang C; Qi M; Yang K
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1079-1085. PubMed ID: 27987662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of skeletal muscle proteins on corrosion of stainless steels].
    Rojas C; Lago ME
    Acta Cient Venez; 2002; 53(2):156-63. PubMed ID: 12516369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.
    Salahinejad E; Hadianfard MJ; Macdonald DD; Sharifi-Asl S; Mozafari M; Walker KJ; Rad AT; Madihally SV; Tayebi L
    PLoS One; 2013; 8(4):e61633. PubMed ID: 23630603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.