These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 16849425)
1. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Komeima K; Rogers BS; Lu L; Campochiaro PA Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11300-5. PubMed ID: 16849425 [TBL] [Abstract][Full Text] [Related]
2. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa. Komeima K; Rogers BS; Campochiaro PA J Cell Physiol; 2007 Dec; 213(3):809-15. PubMed ID: 17520694 [TBL] [Abstract][Full Text] [Related]
3. N-Acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa. Lee SY; Usui S; Zafar AB; Oveson BC; Jo YJ; Lu L; Masoudi S; Campochiaro PA J Cell Physiol; 2011 Jul; 226(7):1843-9. PubMed ID: 21506115 [TBL] [Abstract][Full Text] [Related]
4. Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. Shen J; Yang X; Dong A; Petters RM; Peng YW; Wong F; Campochiaro PA J Cell Physiol; 2005 Jun; 203(3):457-64. PubMed ID: 15744744 [TBL] [Abstract][Full Text] [Related]
5. NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. Usui S; Oveson BC; Lee SY; Jo YJ; Yoshida T; Miki A; Miki K; Iwase T; Lu L; Campochiaro PA J Neurochem; 2009 Aug; 110(3):1028-37. PubMed ID: 19493169 [TBL] [Abstract][Full Text] [Related]
6. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment. Barone I; Novelli E; Strettoi E Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227 [TBL] [Abstract][Full Text] [Related]
7. Spatio-temporal characterization of S- and M/L-cone degeneration in the Rd1 mouse model of retinitis pigmentosa. Narayan DS; Ao J; Wood JPM; Casson RJ; Chidlow G BMC Neurosci; 2019 Sep; 20(1):46. PubMed ID: 31481030 [TBL] [Abstract][Full Text] [Related]
8. Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa. Komeima K; Usui S; Shen J; Rogers BS; Campochiaro PA Free Radic Biol Med; 2008 Sep; 45(6):905-12. PubMed ID: 18634866 [TBL] [Abstract][Full Text] [Related]
9. Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa. John SK; Smith JE; Aguirre GD; Milam AH Mol Vis; 2000 Nov; 6():204-15. PubMed ID: 11063754 [TBL] [Abstract][Full Text] [Related]
10. Role of Müller cells in cone mosaic rearrangement in a rat model of retinitis pigmentosa. Lee EJ; Ji Y; Zhu CL; Grzywacz NM Glia; 2011 Jul; 59(7):1107-17. PubMed ID: 21547953 [TBL] [Abstract][Full Text] [Related]
11. TNFa knockdown in the retina promotes cone survival in a mouse model of autosomal dominant retinitis pigmentosa. Rana T; Kotla P; Fullard R; Gorbatyuk M Biochim Biophys Acta Mol Basis Dis; 2017 Jan; 1863(1):92-102. PubMed ID: 27750040 [TBL] [Abstract][Full Text] [Related]
12. Tissue inhibitor of metalloproteinases 1 enhances rod survival in the rd1 mouse retina. Kim HS; Vargas A; Eom YS; Li J; Yamamoto KL; Craft CM; Lee EJ PLoS One; 2018; 13(5):e0197322. PubMed ID: 29742163 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of cone cell death in Retinitis Pigmentosa. Campochiaro PA; Mir TA Prog Retin Eye Res; 2018 Jan; 62():24-37. PubMed ID: 28962928 [TBL] [Abstract][Full Text] [Related]
14. Selective transplantation of rods delays cone loss in a retinitis pigmentosa model. Mohand-Said S; Hicks D; Dreyfus H; Sahel JA Arch Ophthalmol; 2000 Jun; 118(6):807-11. PubMed ID: 10865319 [TBL] [Abstract][Full Text] [Related]
15. Assessment of cone survival in response to CNTF, GDNF, and VEGF165b in a novel ex vivo model of end-stage retinitis pigmentosa. Lipinski DM; Singh MS; MacLaren RE Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7340-6. PubMed ID: 21873685 [TBL] [Abstract][Full Text] [Related]
16. Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration. Sanz MM; Johnson LE; Ahuja S; Ekström PA; Romero J; van Veen T Neuroscience; 2007 Mar; 145(3):1120-9. PubMed ID: 17293057 [TBL] [Abstract][Full Text] [Related]
17. Cone survival and preservation of visual acuity in an animal model of retinal degeneration. Piano I; Novelli E; Gasco P; Ghidoni R; Strettoi E; Gargini C Eur J Neurosci; 2013 Jun; 37(11):1853-62. PubMed ID: 23551187 [TBL] [Abstract][Full Text] [Related]
18. Controlled rod cell ablation in transgenic Xenopus laevis. Hamm LM; Tam BM; Moritz OL Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):885-92. PubMed ID: 18836175 [TBL] [Abstract][Full Text] [Related]
19. Cone neurite sprouting: an early onset abnormality of the cone photoreceptors in the retinal degeneration mouse. Fei Y Mol Vis; 2002 Aug; 8():306-14. PubMed ID: 12355062 [TBL] [Abstract][Full Text] [Related]
20. Differential sensitivity of cones to iron-mediated oxidative damage. Rogers BS; Symons RC; Komeima K; Shen J; Xiao W; Swaim ME; Gong YY; Kachi S; Campochiaro PA Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):438-45. PubMed ID: 17197565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]