BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16849607)

  • 21. Length polymorphism in the threonine-glycine-encoding repeat region of the period gene in Drosophila.
    Costa R; Peixoto AA; Thackeray JR; Dalgleish R; Kyriacou CP
    J Mol Evol; 1991 Mar; 32(3):238-46. PubMed ID: 1904500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mutation in Drosophila simulans that lengthens the circadian period of locomotor activity.
    Rogers AS; Escher SA; Pasetto C; Rosato E; Costa R; Kyriacou CP
    Genetica; 2004 Mar; 120(1-3):223-32. PubMed ID: 15088660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positional cloning and sequence analysis of the Drosophila clock gene, timeless.
    Myers MP; Wager-Smith K; Wesley CS; Young MW; Sehgal A
    Science; 1995 Nov; 270(5237):805-8. PubMed ID: 7481771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural selection favors a newly derived timeless allele in Drosophila melanogaster.
    Tauber E; Zordan M; Sandrelli F; Pegoraro M; Osterwalder N; Breda C; Daga A; Selmin A; Monger K; Benna C; Rosato E; Kyriacou CP; Costa R
    Science; 2007 Jun; 316(5833):1895-8. PubMed ID: 17600215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Big flies, small repeats: the "Thr-Gly" region of the period gene in Diptera.
    Nielsen J; Peixoto AA; Piccin A; Costa R; Kyriacou CP; Chalmers D
    Mol Biol Evol; 1994 Nov; 11(6):839-53. PubMed ID: 7815924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly conserved Drosophila ananassae timeless gene functions as a clock component in Drosophila melanogaster.
    Nishinokubi I; Shimoda M; Kako K; Sakai T; Fukamizu A; Ishida N
    Gene; 2003 Mar; 307():183-90. PubMed ID: 12706901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. African sequence variation accounts for most of the sequence polymorphism in non-African Drosophila melanogaster.
    Schöfl G; Catania F; Nolte V; Schlötterer C
    Genetics; 2005 Aug; 170(4):1701-9. PubMed ID: 15937137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism.
    Tsaur SC; Ting CT; Wu CI
    Mol Biol Evol; 1998 Aug; 15(8):1040-6. PubMed ID: 9718731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Intronic Polymorphism in couch potato Is Not Distributed Clinally in European Drosophila melanogaster Populations nor Does It Affect Diapause Inducibility.
    Zonato V; Fedele G; Kyriacou CP
    PLoS One; 2016; 11(9):e0162370. PubMed ID: 27598401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymorphism in the couch potato gene clines in eastern Australia but is not associated with ovarian dormancy in Drosophila melanogaster.
    Lee SF; Sgrò CM; Shirriffs J; Wee CW; Rako L; van Heerwaarden B; Hoffmann AA
    Mol Ecol; 2011 Jul; 20(14):2973-84. PubMed ID: 21689187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila.
    Aguadé M
    Genetics; 1999 Jun; 152(2):543-51. PubMed ID: 10353898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unusual pattern of nucleotide sequence variation at the OS-E and OS-F genomic regions of Drosophila simulans.
    Sánchez-Gracia A; Rozas J
    Genetics; 2007 Apr; 175(4):1923-35. PubMed ID: 17277360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.
    Van Gelder RN; Krasnow MA
    EMBO J; 1996 Apr; 15(7):1625-31. PubMed ID: 8612586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complexity of the genetic basis of ageing in nature revealed by a clinal study of lifespan and methuselah, a gene for ageing, in Drosophila from eastern Australia.
    Sgrò CM; van Heerwaarden B; Kellermann V; Wee CW; Hoffmann AA; Lee SF
    Mol Ecol; 2013 Jul; 22(13):3539-51. PubMed ID: 23802551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetics of biological rhythms in drosophila.
    Hall JC
    Adv Genet; 1998; 38():135-84. PubMed ID: 9677707
    [No Abstract]   [Full Text] [Related]  

  • 36. Molecular evolution and population genetics of circadian clock genes.
    Tauber E; Kyriacou CP
    Methods Enzymol; 2005; 393():797-817. PubMed ID: 15817325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Latitudinal clines in gene expression and cis-regulatory element variation in Drosophila melanogaster.
    Juneja P; Quinn A; Jiggins FM
    BMC Genomics; 2016 Nov; 17(1):981. PubMed ID: 27894253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America.
    Fabian DK; Kapun M; Nolte V; Kofler R; Schmidt PS; Schlötterer C; Flatt T
    Mol Ecol; 2012 Oct; 21(19):4748-69. PubMed ID: 22913798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. History and structure of sub-Saharan populations of Drosophila melanogaster.
    Pool JE; Aquadro CF
    Genetics; 2006 Oct; 174(2):915-29. PubMed ID: 16951082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of drosophila: selection and geographic differentiation.
    Begun DJ; Aquadro CF
    Genetics; 1994 Jan; 136(1):155-71. PubMed ID: 8138153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.