BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 16850439)

  • 61. High-flow nasal cannulae for respiratory support of preterm infants: a review of the evidence.
    Manley BJ; Dold SK; Davis PG; Roehr CC
    Neonatology; 2012; 102(4):300-8. PubMed ID: 22964658
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of nasal continuous and biphasic positive airway pressure on lung volume in preterm infants.
    Miedema M; van der Burg PS; Beuger S; de Jongh FH; Frerichs I; van Kaam AH
    J Pediatr; 2013 Apr; 162(4):691-7. PubMed ID: 23102792
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Current application of noninvasive ventilation in preterm infants with respiratory distress syndrome].
    Chen X; Pan JH
    Zhongguo Dang Dai Er Ke Za Zhi; 2014 Nov; 16(11):1177-82. PubMed ID: 25406569
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Decreased imposed work with a new nasal continuous positive airway pressure device.
    Klausner JF; Lee AY; Hutchison AA
    Pediatr Pulmonol; 1996 Sep; 22(3):188-94. PubMed ID: 8893258
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synchronized Nasal Intermittent Positive Pressure Ventilation versus Nasal Continuous Positive Airway Pressure for Prevention of Extubation Failure in Infants after Congenital Heart Surgery.
    Zheng YR; Liu JF; Lei YQ; Wu HL; Cao H; Chen Q
    Heart Surg Forum; 2021 Mar; 24(2):E249-E255. PubMed ID: 33798054
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bubble continuous positive airway pressure, a potentially better practice, reduces the use of mechanical ventilation among very low birth weight infants with respiratory distress syndrome.
    Nowadzky T; Pantoja A; Britton JR
    Pediatrics; 2009 Jun; 123(6):1534-40. PubMed ID: 19482765
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Predicting the need for ventilation in term and near-term neonates.
    Morosini A; Davies MW
    J Paediatr Child Health; 2004 Aug; 40(8):438-43. PubMed ID: 15265184
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of non-synchronised nasal intermittent positive pressure ventilation on spontaneous breathing in preterm infants.
    Owen LS; Morley CJ; Dawson JA; Davis PG
    Arch Dis Child Fetal Neonatal Ed; 2011 Nov; 96(6):F422-8. PubMed ID: 21335623
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Continuous positive airway pressure: early, late, or stay with synchronized intermittent mandatory ventilation?
    Bancalari E; del Moral T
    J Perinatol; 2006 May; 26 Suppl 1():S33-7; discussion S43-5. PubMed ID: 16625223
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Patient-ventilator interaction during acute lung injury, and the role of spontaneous breathing: part 2: airway pressure release ventilation.
    Kallet RH
    Respir Care; 2011 Feb; 56(2):190-203; discussion 203-6. PubMed ID: 21333179
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Observational study of humidified high-flow nasal cannula compared with nasal continuous positive airway pressure.
    Lampland AL; Plumm B; Meyers PA; Worwa CT; Mammel MC
    J Pediatr; 2009 Feb; 154(2):177-82. PubMed ID: 18760803
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome: a randomized controlled trial.
    Malakian A; Bashirnezhadkhabaz S; Aramesh MR; Dehdashtian M
    J Matern Fetal Neonatal Med; 2020 Aug; 33(15):2601-2607. PubMed ID: 30513030
    [No Abstract]   [Full Text] [Related]  

  • 73. Patient-triggered ventilation decreases the work of breathing in neonates.
    Jarreau PH; Moriette G; Mussat P; Mariette C; Mohanna A; Harf A; Lorino H
    Am J Respir Crit Care Med; 1996 Mar; 153(3):1176-81. PubMed ID: 8630564
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nasal intermittent positive pressure ventilation in the newborn: review of literature and evidence-based guidelines.
    Bhandari V
    J Perinatol; 2010 Aug; 30(8):505-12. PubMed ID: 19847188
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of different intermittent mandatory ventilation rates on oxygen consumption in premature infants recovering from respiratory distress syndrome.
    Locke RG; Greenspan J
    J Am Osteopath Assoc; 1995 Jun; 95(6):366-9. PubMed ID: 7615407
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The spontaneous breathing pattern and work of breathing of patients with acute respiratory distress syndrome and acute lung injury.
    Kallet RH; Hemphill JC; Dicker RA; Alonso JA; Campbell AR; Mackersie RC; Katz JA
    Respir Care; 2007 Aug; 52(8):989-95. PubMed ID: 17650353
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pressure-regulated volume control ventilation vs synchronized intermittent mandatory ventilation for very low-birth-weight infants: a randomized controlled trial.
    D'Angio CT; Chess PR; Kovacs SJ; Sinkin RA; Phelps DL; Kendig JW; Myers GJ; Reubens L; Ryan RM
    Arch Pediatr Adolesc Med; 2005 Sep; 159(9):868-75. PubMed ID: 16143747
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of synchronisation during SiPAP-generated nasal intermittent positive pressure ventilation (NIPPV) in preterm infants.
    Owen LS; Morley CJ; Davis PG
    Arch Dis Child Fetal Neonatal Ed; 2015 Jan; 100(1):F24-30. PubMed ID: 24942746
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Early surfactant in spontaneously breathing with nCPAP in ELBW infants--a single centre four year experience.
    Kribs A; Vierzig A; Hünseler C; Eifinger F; Welzing L; Stützer H; Roth B
    Acta Paediatr; 2008 Mar; 97(3):293-8. PubMed ID: 18298776
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synchronized neonatal non-invasive ventilation-a pilot study: the graseby capsule with bi-level NCPAP.
    Stern DJ; Weisner MD; Courtney SE
    Pediatr Pulmonol; 2014 Jul; 49(7):659-64. PubMed ID: 24019236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.