These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16850832)

  • 21. Recyclable magnetic photocatalysts of Fe2+/TiO2 hierarchical architecture with effective removal of Cr(VI) under UV light from water.
    Xu SC; Zhang YX; Pan SS; Ding HL; Li GH
    J Hazard Mater; 2011 Nov; 196():29-35. PubMed ID: 21917375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes.
    Hsu HT; Chen SS; Tang YF; Hsi HC
    J Hazard Mater; 2013 Mar; 248-249():97-106. PubMed ID: 23380448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoreduction of Cr(VI) in water using BiVO
    Ke T; Guo H; Zhang Y; Liu Y
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28239-28247. PubMed ID: 29022219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photocatalytic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(III).
    Hsu CL; Wang SL; Tzou YM
    Environ Sci Technol; 2007 Nov; 41(22):7907-14. PubMed ID: 18075107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced oxidation of five contaminants in water by UV/TiO2: Reaction kinetics and byproducts identification.
    Alvarez-Corena JR; Bergendahl JA; Hart FL
    J Environ Manage; 2016 Oct; 181():544-551. PubMed ID: 27423767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Treatment of Cr(VI) and phenol by illuminated TiO2.
    Lee SM; Lee TW; Choi BJ; Yang JK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(10):2219-28. PubMed ID: 14524676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The synthesis of TiO2 and TiO2-Pt and their application in the removal of Cr (VI).
    Fan JW; Liu XH; Zhang J
    Environ Technol; 2011; 32(3-4):427-37. PubMed ID: 21780710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photo-oxidation of cork manufacturing wastewater.
    Silva CA; Madeira LM; Boaventura RA; Costa CA
    Chemosphere; 2004 Apr; 55(1):19-26. PubMed ID: 14720542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution.
    Peternel IT; Koprivanac N; Bozić AM; Kusić HM
    J Hazard Mater; 2007 Sep; 148(1-2):477-84. PubMed ID: 17400374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical oxidation of organic matter in secondary-treated municipal wastewater by using methods involving ozone, ultraviolet radiation and TiO2 catalyst.
    Tanaka T; Tsuzuki K; Takagi T
    Water Sci Technol; 2001; 43(10):295-302. PubMed ID: 11436794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis.
    Sun B; Reddy EP; Smirniotis PG
    Environ Sci Technol; 2005 Aug; 39(16):6251-9. PubMed ID: 16173589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photocatalysis with chromium-doped TiO2: bulk and surface doping.
    Ould-Chikh S; Proux O; Afanasiev P; Khrouz L; Hedhili MN; Anjum DH; Harb M; Geantet C; Basset JM; Puzenat E
    ChemSusChem; 2014 May; 7(5):1361-71. PubMed ID: 24737636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.
    Zheng S; Jiang W; Rashid M; Cai Y; Dionysiou DD; O'Shea KE
    Molecules; 2015 Feb; 20(2):2622-35. PubMed ID: 25654531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction.
    Wang H; Yuan X; Wu Y; Zeng G; Chen X; Leng L; Wu Z; Jiang L; Li H
    J Hazard Mater; 2015 Apr; 286():187-94. PubMed ID: 25585267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species.
    Wang L; Wang N; Zhu L; Yu H; Tang H
    J Hazard Mater; 2008 Mar; 152(1):93-9. PubMed ID: 17664041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Performance of solar/S-doped TiO2 on the decomposition of bisphenol A].
    Liu C; Chen W; Tao H; Lin T
    Huan Jing Ke Xue; 2009 Jun; 30(6):1653-7. PubMed ID: 19662846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI).
    Hasmath Farzana M; Meenakshi S
    Int J Biol Macromol; 2015 Jan; 72():1265-71. PubMed ID: 25277118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving photoelectrochemical reduction of Cr(VI) ions by building α-Fe
    Wang P; Dong F; Liu M; He H; Huo T; Zhou L; Zhang W
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22455-22463. PubMed ID: 29460249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.