These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16850972)

  • 1. Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8.
    Pinkerton FE; Meisner GP; Meyer MS; Balogh MP; Kundrat MD
    J Phys Chem B; 2005 Jan; 109(1):6-8. PubMed ID: 16850972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen release from mixtures of lithium borohydride and lithium amide: a phase diagram study.
    Meisner GP; Scullin ML; Balogh MP; Pinkerton FE; Meyer MS
    J Phys Chem B; 2006 Mar; 110(9):4186-92. PubMed ID: 16509713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved hydrogen release from LiB0.33N0.67H2.67 with noble metal additions.
    Pinkerton FE; Meyer MS; Meisner GP; Balogh MP
    J Phys Chem B; 2006 Apr; 110(15):7967-74. PubMed ID: 16610895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling.
    Hanada N; Ichikawa T; Fujii H
    J Phys Chem B; 2005 Apr; 109(15):7188-94. PubMed ID: 16851820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promoted hydrogen release from ammonia borane by mechanically milling with magnesium hydride: a new destabilizing approach.
    Kang X; Ma L; Fang Z; Gao L; Luo J; Wang S; Wang P
    Phys Chem Chem Phys; 2009 Apr; 11(14):2507-13. PubMed ID: 19325985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation mechanism and structural characterization of the mixed transition-metal complex hydride Mg2(FeH6)0.5(CoH5)0.5 obtained by reactive milling.
    Deledda S; Hauback BC
    Nanotechnology; 2009 May; 20(20):204010. PubMed ID: 19420658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stepwise phase transition in the formation of lithium amidoborane.
    Wu C; Wu G; Xiong Z; David WI; Ryan KR; Jones MO; Edwards PP; Chu H; Chen P
    Inorg Chem; 2010 May; 49(9):4319-23. PubMed ID: 20353150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen absorption and desorption by the Li-Al-N-H system.
    Kojima Y; Matsumoto M; Kawai Y; Haga T; Ohba N; Miwa K; Towata S; Nakamori Y; Orimo S
    J Phys Chem B; 2006 May; 110(19):9632-6. PubMed ID: 16686512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydrogenation of a combined LiAlH4/LiNH2 system.
    Lu J; Fang ZZ
    J Phys Chem B; 2005 Nov; 109(44):20830-4. PubMed ID: 16853700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-capacity hydrogen storage in lithium and sodium amidoboranes.
    Xiong Z; Yong CK; Wu G; Chen P; Shaw W; Karkamkar A; Autrey T; Jones MO; Johnson SR; Edwards PP; David WI
    Nat Mater; 2008 Feb; 7(2):138-41. PubMed ID: 18157135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen release from Mg(NH2)2-MgH2 through mechanochemical reaction.
    Hu J; Wu G; Liu Y; Xiong Z; Chen P; Murata K; Sakata K; Wolf G
    J Phys Chem B; 2006 Aug; 110(30):14688-92. PubMed ID: 16869574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reaction process of hydrogen absorption and desorption on the nanocomposite of hydrogenated graphite and lithium hydride.
    Miyaoka H; Ichikawa T; Kojima Y
    Nanotechnology; 2009 May; 20(20):204021. PubMed ID: 19420669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium borohydride for hydrogen storage: catalysis and reversibility.
    Rönnebro E; Majzoub EH
    J Phys Chem B; 2007 Oct; 111(42):12045-7. PubMed ID: 17914804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Al3Li4(BH4)13: a complex double-cation borohydride with a new structure.
    Lindemann I; Domènech Ferrer R; Dunsch L; Filinchuk Y; Cerný R; Hagemann H; D'Anna V; Lawson Daku LM; Schultz L; Gutfleisch O
    Chemistry; 2010 Aug; 16(29):8707-12. PubMed ID: 20583064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system.
    Ozolins V; Majzoub EH; Wolverton C
    J Am Chem Soc; 2009 Jan; 131(1):230-7. PubMed ID: 19072157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen storage in magnesium clusters: quantum chemical study.
    Wagemans RW; van Lenthe JH; de Jongh PE; van Dillen AJ; de Jong KP
    J Am Chem Soc; 2005 Nov; 127(47):16675-80. PubMed ID: 16305257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced catalytic dehydrogenation of LiBH(4) by carbon-supported Pd nanoparticles.
    Xu J; Yu X; Ni J; Zou Z; Li Z; Yang H
    Dalton Trans; 2009 Oct; (39):8386-91. PubMed ID: 19789792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na[Li(NH2BH3)2]--the first mixed-cation amidoborane with unusual crystal structure.
    Fijalkowski KJ; Genova RV; Filinchuk Y; Budzianowski A; Derzsi M; Jaroń T; Leszczyński PJ; Grochala W
    Dalton Trans; 2011 May; 40(17):4407-13. PubMed ID: 21409199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH(2)/MgH(2) system.
    Liang C; Liu Y; Luo K; Li B; Gao M; Pan H; Wang Q
    Chemistry; 2010 Jan; 16(2):693-702. PubMed ID: 19876977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.