These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 16851006)

  • 41. Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction.
    Komarov PV; Zherenkova LV; Khalatur PG
    J Chem Phys; 2008 Mar; 128(12):124909. PubMed ID: 18376975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles.
    Shultz MD; Reveles JU; Khanna SN; Carpenter EE
    J Am Chem Soc; 2007 Mar; 129(9):2482-7. PubMed ID: 17290990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of Al nanoparticles: transmission electron microscopy, thermal and spectral studies.
    Chandra S; Kumar A; Tomar PK
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():392-7. PubMed ID: 22446790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media.
    Imai H; Izumi K; Matsumoto M; Kubo Y; Kato K; Imai Y
    J Am Chem Soc; 2009 May; 131(17):6293-300. PubMed ID: 19358577
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interdiffusion and surface-sandwich ordering in initial Ni-core-Pd-shell nanoparticle.
    Evteev AV; Levchenko EV; Belova IV; Murch GE
    Phys Chem Chem Phys; 2009 May; 11(17):3233-40. PubMed ID: 19370219
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A molecular dynamics simulation of the adsorption of water molecules surrounding an Au nanoparticle.
    Ju SP
    J Chem Phys; 2005 Mar; 122(9):094718. PubMed ID: 15836173
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and transport properties of nanostructured materials.
    Sonwane CG; Li Q
    J Phys Chem B; 2005 Mar; 109(12):5691-9. PubMed ID: 16851615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Initial oxidation of a Rh(110) surface using atomic or molecular oxygen and reduction of the surface oxide by hydrogen.
    Dudin P; Barinov A; Gregoratti L; Kiskinova M; Esch F; Dri C; Africh C; Comelli G
    J Phys Chem B; 2005 Jul; 109(28):13649-55. PubMed ID: 16852710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacterial toxicity comparison between nano- and micro-scaled oxide particles.
    Jiang W; Mashayekhi H; Xing B
    Environ Pollut; 2009 May; 157(5):1619-25. PubMed ID: 19185963
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions of aluminum nanoparticles with human epidermal keratinocytes.
    Monteiro-Riviere NA; Oldenburg SJ; Inman AO
    J Appl Toxicol; 2010 Apr; 30(3):276-85. PubMed ID: 20013751
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quartz crystal microbalance studies of Al2O3 atomic layer deposition using trimethylaluminum and water at 125 degrees C.
    Wind RA; George SM
    J Phys Chem A; 2010 Jan; 114(3):1281-9. PubMed ID: 19757806
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular dynamics simulation of titanium dioxide nanoparticle sintering.
    Koparde VN; Cummings PT
    J Phys Chem B; 2005 Dec; 109(51):24280-7. PubMed ID: 16375425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ observation of oxidation of liquid droplets of tin and melting behavior of a tin particle covered with a tin oxide layer.
    Mima T; Takeuchi H; Arai S; Kishita K; Kuroda K; Saka H
    Microsc Res Tech; 2009 Mar; 72(3):223-31. PubMed ID: 19156703
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular dynamics study of nanoparticle stability at liquid interfaces: effect of nanoparticle-solvent interaction and capillary waves.
    Cheung DL
    J Chem Phys; 2011 Aug; 135(5):054704. PubMed ID: 21823723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2005 Jan; 122(2):024706. PubMed ID: 15638613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of CeO2 doping on catalytic activity of Fe2O3/gamma-Al2O(3) catalyst for catalytic wet peroxide oxidation of azo dyes.
    Liu Y; Sun D
    J Hazard Mater; 2007 May; 143(1-2):448-54. PubMed ID: 17049725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Local structure of aluminum in zeolite mordenite as affected by temperature.
    Bugaev LA; van Bokhoven JA; Sokolenko AP; Latokha YV; Avakyan LA
    J Phys Chem B; 2005 Jun; 109(21):10771-8. PubMed ID: 16852309
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of palladium on the reducibility of Mn based materials: correlation with methane oxidation activity.
    Baylet A; Royer S; Labrugère C; Valencia H; Marécot P; Tatibouët JM; Duprez D
    Phys Chem Chem Phys; 2008 Oct; 10(39):5983-92. PubMed ID: 18825286
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.
    Wang AQ; Chang CM; Mou CY
    J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.