BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 16851051)

  • 41. The prediction of intermolecular proton-transfer of guanine-cytosine base pair under the influence of fragments from decomposed MOFs.
    Han Y; Li D
    J Mol Model; 2019 Jan; 25(2):40. PubMed ID: 30666421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of base pairing on the electrochemical oxidation of guanine.
    Costentin C; Hajj V; Robert M; Savéant JM; Tard C
    J Am Chem Soc; 2010 Jul; 132(29):10142-7. PubMed ID: 20597511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. (G-H)*-C and G-(C-H)* radicals derived from the guanine.cytosine base pair cause DNA subunit lesions.
    Bera PP; Schaefer HF
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6698-703. PubMed ID: 15814617
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electronic properties of metal-modified DNA base pairs.
    Brancolini G; Di Felice R
    J Phys Chem B; 2008 Nov; 112(45):14281-90. PubMed ID: 18950088
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photoreaction channels of the guanine-cytosine base pair explored by long-range corrected TDDFT calculations.
    Yamazaki S; Taketsugu T
    Phys Chem Chem Phys; 2012 Jul; 14(25):8866-77. PubMed ID: 22596076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computational study of substituent effects on the interaction energies of hydrogen-bonded Watson-Crick cytosine: guanine base pairs.
    Xue C; Popelier PL
    J Phys Chem B; 2008 Apr; 112(16):5257-64. PubMed ID: 18373374
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vibrational spectroscopy of the G...C base pair: experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings.
    Brauer B; Gerber RB; Kabelác M; Hobza P; Bakker JM; Abo Riziq AG; de Vries MS
    J Phys Chem A; 2005 Aug; 109(31):6974-84. PubMed ID: 16834057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen bonding effects on the (15)N and (1)H shielding tensors in nucleic acid base pairs.
    Czernek J; Fiala R; Sklenár V
    J Magn Reson; 2000 Jul; 145(1):142-6. PubMed ID: 10873505
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron affinity of the guanine-cytosine base pair and structural perturbations upon anion formation.
    Richardson NA; Wesolowski SS; Schaefer HF
    J Am Chem Soc; 2002 Aug; 124(34):10163-70. PubMed ID: 12188681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A time-dependent quantum dynamics investigation of the guanine-cytosine system: a six-dimensional model.
    Villani G
    J Chem Phys; 2008 Mar; 128(11):114306. PubMed ID: 18361570
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Do single-electron lithium bonds exist? Prediction and characterization of the H3C...Li-Y (Y=H, F, OH, CN, NC, and CCH) complexes.
    Li Y; Wu D; Li ZR; Chen W; Sun CC
    J Chem Phys; 2006 Aug; 125(8):084317. PubMed ID: 16965022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogen-bonded trimers of DNA bases and their interaction with metal cations: ab initio quantum-chemical and empirical potential study.
    Sponer J; Burda JV; Mejzlík P; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 1997 Apr; 14(5):613-28. PubMed ID: 9130083
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Orbital based electronic structural signatures of the guanine keto G-7H/G-9H tautomer pair as studied using dual space analysis.
    Jones DB; Wang F; Winkler DA; Brunger MJ
    Biophys Chem; 2006 May; 121(2):105-20. PubMed ID: 16464529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Theoretical investigation of the proton transfer mechanism in guanine-cytosine and adenine-thymine base pairs.
    Xiao S; Wang L; Liu Y; Lin X; Liang H
    J Chem Phys; 2012 Nov; 137(19):195101. PubMed ID: 23181336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Supramolecular switches based on the guanine-cytosine (GC) Watson-Crick pair: effect of neutral and ionic substituents.
    Fonseca Guerra C; van der Wijst T; Bickelhaupt FM
    Chemistry; 2006 Apr; 12(11):3032-42. PubMed ID: 16453355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microhydration of the guanine-cytosine (GC) base pair in the neutral and anionic radical states: a density functional study.
    Kumar A; Sevilla MD; Suhai S
    J Phys Chem B; 2008 Apr; 112(16):5189-98. PubMed ID: 18380501
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combined Monte Carlo and quantum mechanics study of the hydration of the guanine-cytosine base pair.
    Coutinho K; Ludwig V; Canuto S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061902. PubMed ID: 15244612
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutual relationship between stacking and hydrogen bonding in DNA. Theoretical study of guanine-cytosine, guanine-5-methylcytosine, and their dimers.
    Acosta-Silva C; Branchadell V; Bertran J; Oliva A
    J Phys Chem B; 2010 Aug; 114(31):10217-27. PubMed ID: 20684646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Valence anions of 9-methylguanine-1-methylcytosine complexes. Computational and photoelectron spectroscopy studies.
    Szyperska A; Rak J; Leszczynski J; Li X; Ko YJ; Wang H; Bowen KH
    J Am Chem Soc; 2009 Feb; 131(7):2663-9. PubMed ID: 19170629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The negative ion states of molecules: adenine and guanine.
    Chen ES; Chen EC
    Biochem Biophys Res Commun; 2001 Nov; 289(2):421-6. PubMed ID: 11716490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.