BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16851056)

  • 1. Time-resolved FTIR spectroscopy of the photointermediates involved in fast transient H+ release by proteorhodopsin.
    Xiao Y; Partha R; Krebs R; Braiman M
    J Phys Chem B; 2005 Jan; 109(1):634-41. PubMed ID: 16851056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the structure and photocycle of PR 2D crystals with CD and FTIR spectroscopy.
    Schäfer G; Shastri S; Verhoefen MK; Vogel V; Glaubitz C; Wachtveitl J; Mäntele W
    Photochem Photobiol; 2009; 85(2):529-34. PubMed ID: 19267874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage- and pH-dependent changes in vectoriality of photocurrents mediated by wild-type and mutant proteorhodopsins upon expression in Xenopus oocytes.
    Lörinczi E; Verhoefen MK; Wachtveitl J; Woerner AC; Glaubitz C; Engelhard M; Bamberg E; Friedrich T
    J Mol Biol; 2009 Oct; 393(2):320-41. PubMed ID: 19631661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy.
    Lórenz-Fonfría VA; Furutani Y; Kandori H
    Biochemistry; 2008 Apr; 47(13):4071-81. PubMed ID: 18321068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine.
    Xiao Y; Hutson MS; Belenky M; Herzfeld J; Braiman MS
    Biochemistry; 2004 Oct; 43(40):12809-18. PubMed ID: 15461453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time and pH dependence of the L-to-M transition in the photocycle of bacteriorhodopsin and its correlation with proton release.
    Althaus T; Stockburger M
    Biochemistry; 1998 Mar; 37(9):2807-17. PubMed ID: 9485432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteorhodopsin is a light-driven proton pump with variable vectoriality.
    Friedrich T; Geibel S; Kalmbach R; Chizhov I; Ataka K; Heberle J; Engelhard M; Bamberg E
    J Mol Biol; 2002 Aug; 321(5):821-38. PubMed ID: 12206764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes of Salinibacter sensory rhodopsin I upon formation of the K and M photointermediates.
    Suzuki D; Sudo Y; Furutani Y; Takahashi H; Homma M; Kandori H
    Biochemistry; 2008 Dec; 47(48):12750-9. PubMed ID: 18991393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTIR spectroscopy of the O photointermediate in pharaonis phoborhodopsin.
    Furutani Y; Iwamoto M; Shimono K; Wada A; Ito M; Kamo N; Kandori H
    Biochemistry; 2004 May; 43(18):5204-12. PubMed ID: 15122886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of water on the photochemical reaction cycle of proteorhodopsin at low and high pH.
    Lakatos M; Váró G
    J Photochem Photobiol B; 2004 Feb; 73(3):177-82. PubMed ID: 14975406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic.
    Dioumaev AK; Wang JM; Bálint Z; Váró G; Lanyi JK
    Biochemistry; 2003 Jun; 42(21):6582-7. PubMed ID: 12767242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton release and uptake of pharaonis phoborhodopsin (sensory rhodopsin II) reconstituted into phospholipids.
    Iwamoto M; Hasegawa C; Sudo Y; Shimono K; Araiso T; Kamo N
    Biochemistry; 2004 Mar; 43(11):3195-203. PubMed ID: 15023069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton release group of pharaonis phoborhodopsin revealed by ATR-FTIR spectroscopy.
    Kitade Y; Furutani Y; Kamo N; Kandori H
    Biochemistry; 2009 Feb; 48(7):1595-603. PubMed ID: 19178155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color-changing mutation in the E-F loop of proteorhodopsin.
    Yoshitsugu M; Yamada J; Kandori H
    Biochemistry; 2009 May; 48(20):4324-30. PubMed ID: 19334675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreversal kinetics of the I1 and I2 intermediates in the photocycle of photoactive yellow protein by double flash experiments with variable time delay.
    Joshi CP; Borucki B; Otto H; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Jan; 44(2):656-65. PubMed ID: 15641791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of fast light-activated H+ release and M intermediate formation from proteorhodopsin.
    Krebs RA; Alexiev U; Partha R; DeVita AM; Braiman MS
    BMC Physiol; 2002 Apr; 2():5. PubMed ID: 11943070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent photoisomerization of retinal in proteorhodopsin.
    Huber R; Köhler T; Lenz MO; Bamberg E; Kalmbach R; Engelhard M; Wachtveitl J
    Biochemistry; 2005 Feb; 44(6):1800-6. PubMed ID: 15697205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier transform infrared spectra of a late intermediate of the bacteriorhodopsin photocycle suggest transient protonation of Asp-212.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1999 Aug; 38(31):10070-8. PubMed ID: 10433714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.