These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 16851106)
1. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes. Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106 [TBL] [Abstract][Full Text] [Related]
2. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
3. Modification of multi-wall carbon nanotube surfaces with poly(amidoamine) dendrons: synthesis and metal templating. Tao L; Chen G; Mantovani G; York S; Haddleton DM Chem Commun (Camb); 2006 Dec; (47):4949-51. PubMed ID: 17136257 [TBL] [Abstract][Full Text] [Related]
4. Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica. Ramesh P; Okazaki T; Taniguchi R; Kimura J; Sugai T; Sato K; Ozeki Y; Shinohara H J Phys Chem B; 2005 Jan; 109(3):1141-7. PubMed ID: 16851073 [TBL] [Abstract][Full Text] [Related]
6. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146 [TBL] [Abstract][Full Text] [Related]
7. Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. Rümmeli MH; Schäffel F; Bachmatiuk A; Adebimpe D; Trotter G; Börrnert F; Scott A; Coric E; Sparing M; Rellinghaus B; McCormick PG; Cuniberti G; Knupfer M; Schultz L; Büchner B ACS Nano; 2010 Feb; 4(2):1146-52. PubMed ID: 20088596 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts. Ko JR; Ahn WS J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785 [TBL] [Abstract][Full Text] [Related]
9. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568 [TBL] [Abstract][Full Text] [Related]
10. Periodic inclusion of room-temperature-ferromagnetic metal phosphide nanoparticles in carbon nanotubes. Jourdain V; Simpson ET; Paillet M; Kasama T; Dunin-Borkowski RE; Poncharal P; Zahab A; Loiseau A; Robertson J; Bernier P J Phys Chem B; 2006 May; 110(20):9759-63. PubMed ID: 16706422 [TBL] [Abstract][Full Text] [Related]
11. Ni/SiO2 promoted growth of carbon nanofibers from chlorobenzene: characterization of the active metal sites. Keane MA; Jacobs G; Patterson PM J Colloid Interface Sci; 2006 Oct; 302(2):576-88. PubMed ID: 16860817 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly of linear arrays of semiconductor nanoparticles on carbon single-walled nanotubes. Engtrakul C; Kim YH; Nedeljković JM; Ahrenkiel SP; Gilbert KE; Alleman JL; Zhang SB; Mićić OI; Nozik AJ; Heben MJ J Phys Chem B; 2006 Dec; 110(50):25153-7. PubMed ID: 17165958 [TBL] [Abstract][Full Text] [Related]
13. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes. Pumera M; Iwai H Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183 [TBL] [Abstract][Full Text] [Related]
14. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. Mu Y; Liang H; Hu J; Jiang L; Wan L J Phys Chem B; 2005 Dec; 109(47):22212-6. PubMed ID: 16853891 [TBL] [Abstract][Full Text] [Related]
15. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289 [TBL] [Abstract][Full Text] [Related]
16. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst. Ouyang Y; Chen L; Liu QX; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):317-20. PubMed ID: 18249582 [TBL] [Abstract][Full Text] [Related]
17. How does a carbon nanotube grow? An in situ investigation on the cap evolution. Jin C; Suenaga K; Iijima S ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345 [TBL] [Abstract][Full Text] [Related]
18. Ordered arrays of magnetic metal nanotubes and nanowires encapsulated with carbon tubes. Gao C; Tao F; Lin W; Xu Z; Xue Z J Nanosci Nanotechnol; 2008 Sep; 8(9):4494-9. PubMed ID: 19049046 [TBL] [Abstract][Full Text] [Related]
19. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256 [TBL] [Abstract][Full Text] [Related]
20. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. Cui SK; Guo DJ J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]