These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 16851111)
1. Ion beam analyses of carbon nanotubes. Naab FU; Holland OW; Duggan JL; McDaniel FD J Phys Chem B; 2005 Feb; 109(4):1415-9. PubMed ID: 16851111 [TBL] [Abstract][Full Text] [Related]
2. Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Ge C; Lao F; Li W; Li Y; Chen C; Qiu Y; Mao X; Li B; Chai Z; Zhao Y Anal Chem; 2008 Dec; 80(24):9426-34. PubMed ID: 18998708 [TBL] [Abstract][Full Text] [Related]
3. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes. Kolodiazhnyi T; Pumera M Small; 2008 Sep; 4(9):1476-84. PubMed ID: 18680097 [TBL] [Abstract][Full Text] [Related]
4. High resolution depth profile analysis by elastic recoil detection with heavy ions. Dollinger G; Bergmaier A; Faestermann T; Frey CM Anal Bioanal Chem; 1995 Oct; 353(3-4):311-5. PubMed ID: 15048488 [TBL] [Abstract][Full Text] [Related]
5. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes. Pumera M; Iwai H Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183 [TBL] [Abstract][Full Text] [Related]
6. Thin film depth profiling by ion beam analysis. Jeynes C; Colaux JL Analyst; 2016 Oct; 141(21):5944-5985. PubMed ID: 27747322 [TBL] [Abstract][Full Text] [Related]
7. Purification of carbon nanotubes by high temperature chlorine gas treatment. Chng EL; Poh HL; Sofer Z; Pumera M Phys Chem Chem Phys; 2013 Apr; 15(15):5615-9. PubMed ID: 23471202 [TBL] [Abstract][Full Text] [Related]
8. Accurate determination of quantity of material in thin films by Rutherford backscattering spectrometry. Jeynes C; Barradas NP; Szilágyi E Anal Chem; 2012 Jul; 84(14):6061-9. PubMed ID: 22681761 [TBL] [Abstract][Full Text] [Related]
9. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Liu Q; Lu X; Li J; Yao X; Li J Biosens Bioelectron; 2007 Jun; 22(12):3203-9. PubMed ID: 17416515 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics study of damage production in single-walled carbon nanotubes irradiated by various ion species. Xu Z; Zhang W; Zhu Z; Huai P Nanotechnology; 2009 Mar; 20(12):125706. PubMed ID: 19420483 [TBL] [Abstract][Full Text] [Related]
11. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. Li J; Tang S; Lu L; Zeng HC J Am Chem Soc; 2007 Aug; 129(30):9401-9. PubMed ID: 17616130 [TBL] [Abstract][Full Text] [Related]
12. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289 [TBL] [Abstract][Full Text] [Related]
13. Cobalt nanoparticle-assisted engineering of multiwall carbon nanotubes. Wang MS; Bando Y; Rodriguez-Manzo JA; Banhart F; Golberg D ACS Nano; 2009 Sep; 3(9):2632-8. PubMed ID: 19678671 [TBL] [Abstract][Full Text] [Related]
14. i-Motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes. Peng Y; Wang X; Xiao Y; Feng L; Zhao C; Ren J; Qu X J Am Chem Soc; 2009 Sep; 131(38):13813-8. PubMed ID: 19736925 [TBL] [Abstract][Full Text] [Related]
15. Direct growth of aligned carbon nanotubes on bulk metals. Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161 [TBL] [Abstract][Full Text] [Related]
16. An analysis of the influence of impurities on fast particle attenuation and on fast ion spectral shape in LHD. Veshchev EA; Goncharov PR; Ozaki T; Sudo S Rev Sci Instrum; 2008 Oct; 79(10):10F310. PubMed ID: 19044623 [TBL] [Abstract][Full Text] [Related]
17. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278 [TBL] [Abstract][Full Text] [Related]
18. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. Huang L; Lau SP; Yang HY; Leong ES; Yu SF; Prawer S J Phys Chem B; 2005 Apr; 109(16):7746-8. PubMed ID: 16851899 [TBL] [Abstract][Full Text] [Related]
19. Impurities within carbon nanotubes govern the electrochemical oxidation of substituted hydrazines. Stuart EJ; Pumera M Phys Chem Chem Phys; 2011 Jun; 13(22):10818-22. PubMed ID: 21556440 [TBL] [Abstract][Full Text] [Related]
20. Functionalized carbon nanotubes in drug design and discovery. Prato M; Kostarelos K; Bianco A Acc Chem Res; 2008 Jan; 41(1):60-8. PubMed ID: 17867649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]